Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio - BMC Medical Research Methodology

Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio - BMC Medical Research Methodology

Barros, Aluísio JD;Hirakata, Vânia N;Barros, Aluísio JD;Hirakata, Vânia N;
BMC medical research methodology 2003 Vol. 3 pp. 1-13
340
jd2003bmcalternatives

Abstract

Background Cross-sectional studies with binary outcomes analyzed by logistic regression are frequent in the epidemiological literature. However, the odds ratio can importantly overestimate the prevalence ratio, the measure of choice in these studies. Also, controlling for confounding is not equivalent for the two measures. In this paper we explore alternatives for modeling data of such studies with techniques that directly estimate the prevalence ratio. Methods We compared Cox regression with constant time at risk, Poisson regression and log-binomial regression against the standard Mantel-Haenszel estimators. Models with robust variance estimators in Cox and Poisson regressions and variance corrected by the scale parameter in Poisson regression were also evaluated. Results Three outcomes, from a cross-sectional study carried out in Pelotas, Brazil, with different levels of prevalence were explored: weight-for-age deficit (4%), asthma (31%) and mother in a paid job (52%). Unadjusted Cox/Poisson regression and Poisson regression with scale parameter adjusted by deviance performed worst in terms of interval estimates. Poisson regression with scale parameter adjusted by χ2 showed variable performance depending on the outcome prevalence. Cox/Poisson regression with robust variance, and log-binomial regression performed equally well when the model was correctly specified. Conclusions Cox or Poisson regression with robust variance and log-binomial regression provide correct estimates and are a better alternative for the analysis of cross-sectional studies with binary outcomes than logistic regression, since the prevalence ratio is more interpretable and easier to communicate to non-specialists than the odds ratio. However, precautions are needed to avoid estimation problems in specific situations.

Citation

ID: 270996
Ref Key: jd2003bmcalternatives
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
270996
Unique Identifier:
doi:10.1186/1471-2288-3-21
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet