Deploying nEmesis: Preventing Foodborne Illness by Data Mining Social Media

Deploying nEmesis: Preventing Foodborne Illness by Data Mining Social Media

Adam Sadilek;Henry Kautz;Lauren DiPrete;Brian Labus;Eric Portman;Jack Teitel;Vincent Silenzio;
ai magazine 2017 Vol. 38 pp. 37-48
94
sadilek2017aideploying

Abstract

Foodborne illness afflicts 48 million people annually in the U.S. alone. Over 128,000 are hospitalized and 3,000 die from the infection. While preventable with proper food safety practices, the traditional restaurant inspection process has limited impact given the predictability and low frequency of inspections, and the dynamic nature of the kitchen environment. Despite this reality, the inspection process has remained largely unchanged for decades. CDC has even identified food safety as one of seven ”winnable battles”; however, progress to date has been limited. In this work, we demonstrate significant improvements in food safety by marrying AI and the standard inspection process. We apply machine learning to Twitter data, develop a system that automatically detects venues likely to pose a public health hazard, and demonstrate its efficacy in the Las Vegas metropolitan area in a double-blind experiment conducted over three months in collaboration with Nevada’s health department. By contrast, previous research in this domain has been limited to indirect correlative validation using only aggregate statistics. We show that adaptive inspection process is 64 percent more effective at identifying problematic venues than the current state of the art. If fully deployed, our approach could prevent over 9,000 cases of foodborne illness and 557 hospitalizations annually in Las Vegas alone. Additionally, adaptive inspections result in unexpected benefits, including the identification of venues lacking permits, contagious kitchen staff, and fewer customer complaints filed with the Las Vegas health department.

Keywords

Citation

ID: 269833
Ref Key: sadilek2017aideploying
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
269833
Unique Identifier:
10.1609/aimag.v38i1.2711
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet