Suppression of the C/EBP family of transcription factors in adipose tissue causes lipodystrophy

Suppression of the C/EBP family of transcription factors in adipose tissue causes lipodystrophy

Raghunath Chatterjee;Paramita Bhattacharya;Oksana Gavrilova;Kimberly Glass;Jaideep Moitra;Max Myakishev;Stephanie Pack;William Jou;Lionel Feigenbaum;Michael Eckhaus;Charles Vinson;
journal of molecular endocrinology 2011 Vol. 46 pp. 175-192
137
chatterjee2011journalsuppression

Abstract

Adipose-specific inactivation of both AP-1 and CCAAT-enhancer-binding protein (C/EBP) families of B-ZIP transcription factors in transgenic mice causes severe lipoatrophy. To evaluate whether inactivation of only C/EBP members was critical for lipoatrophy, A-C/EBP, a dominant-negative protein that specifically inhibits the DNA binding of the C/EBP members, was expressed in adipose tissue. For the first 2 weeks after birth, aP2-A-C/EBP mice had no white adipose tissue (WAT), drastically reduced brown adipose tissue (BAT), and exhibited marked hepatic steatosis, hyperinsulinemia, and hyperlipidemia. However, WAT appeared during the third week, coinciding with significantly improved metabolic functioning. In adults, BAT remained reduced, causing cold intolerance. At 30 weeks, the aP2-A-C/EBP mice had only 35% reduced WAT, with clear morphological signs of lipodystrophy in subcutaneous fat. Circulating leptin and adiponectin levels were less than the wild-type levels, and these mice exhibited impaired triglyceride clearance. Insulin resistance, glucose intolerance, and reduced free fatty acid release in response to β3-adrenergic agonist suggest improper functioning of the residual WAT. Gene expression analysis of inguinal WAT identified reduced mRNA levels of several enzymes involved in fatty acid synthesis and glucose metabolism that are known C/EBPα transcriptional targets. There were increased levels for genes involved in inflammation and muscle differentiation. However, when dermal fibroblasts from aP2-A-C/EBP mice were differentiated into adipocytes in tissue culture, muscle markers were elevated more than the inflammatory markers. These results demonstrate that the C/EBP family is essential for adipose tissue development during the early postnatal period, the regulation of glucose and lipid homeostasis in adults, and the suppression of the muscle lineage.

Keywords

Citation

ID: 265726
Ref Key: chatterjee2011journalsuppression
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
265726
Unique Identifier:
10.1530/JME-10-0172
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet