eg-assisted synthesis and electrochemical performance of ultrathin carbon-coated limnpo4 nanoplates as cathodes in lithium ion batteries

eg-assisted synthesis and electrochemical performance of ultrathin carbon-coated limnpo4 nanoplates as cathodes in lithium ion batteries

;Liwei Su;Yali Sha;Jingkang Jiang;Lianbang Wang;Yuanhao Wang
reproductive biology and endocrinology : rb&e 2015 Vol. 2015 pp. -
144
su2015journaleg-assisted

Abstract

Ultrathin carbon-coated LiMnPO4 (ULMP/C) nanoplates were prepared through an ethylene glycol- (EG-) assisted pyrolysis method. Different from most of LiMnPO4/C works, the obtained ULMP/C possessed relatively small particle size (less than 50 nm in thickness) and preferable carbon coating (~1 nm in thickness, 2 wt.%). As a reference, LiMnPO4/C (LMP/C) composites were also fabricated via the traditional hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TG), galvanostatic charge-discharge, and cyclic voltammetry (CV) were performed to characterize the crystalline phase, morphology, structure, carbon content, and electrochemical behaviors of samples. The electrochemical performance of bare and carbon-coated LiMnPO4 was evaluated as cathodes in lithium ion batteries. As a result, the obtained ULMP/C nanoplates demonstrated much higher reversible capacities (110.9 mAh g−1 after 50 cycles at 0.1 C) and rate performances than pure LMP and LMP/C composites. This facile and efficient EG-assisted pyrolysis method can enlighten us on exploiting advanced routes to modify active materials with ultrathin and homogeneous carbon layers.

Citation

ID: 238166
Ref Key: su2015journaleg-assisted
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
238166
Unique Identifier:
10.1155/2015/401656
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet