Efficient and Memory Saving Method Based on Pseudoskeleton Approximation for Analysis of Finite Periodic Structures

Efficient and Memory Saving Method Based on Pseudoskeleton Approximation for Analysis of Finite Periodic Structures

Luo, Chunbei;Zhang, Yong;Lin, Hai;
international journal of antennas and propagation 2018 Vol. 2018 pp. -
314
luo2018efficientinternational

Abstract

An efficient and memory saving method based on pseudoskeleton approximation (PSA) is presented for the effective and accurate analysis of finite periodic structures. Different from the macro basis function analysis model, our proposed method uses the formulations derived by the local Rao-Wilton-Glisson basis functions. PSA is not only used to accelerate the matrix-vector product (MVP) inside the single unit but also adopted to decrease the calculation burden of the coupling between the different cells. Moreover, the number of decomposed coupling matrices is minimized due to the displacement invariance of the periodic property. Consequently, even compared with the multilevel fast multipole algorithm (MLFMA), the new method saves much more memory resources and computation time, which is also demonstrated by the numerical examples.

Citation

ID: 2310
Ref Key: luo2018efficientinternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
2310
Unique Identifier:
59819a51321c29810869e4c96c5b4776
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet