Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion.

Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion.

Eggers, Ruben;de Winter, Fred;Arkenaar, Cleo;Tannemaat, Martijn R;Verhaagen, Joost;
experimental neurology 2019 Vol. 321 pp. 113037
273
eggers2019enhancedexperimental

Abstract

Avulsion of spinal nerve roots is a severe proximal peripheral nerve lesion. Despite neurosurgical repair, recovery of function in human patients is disappointing, because spinal motor neurons degenerate progressively, axons grow slowly and the distal Schwann cells which are instrumental to supporting axon extension lose their pro-regenerative properties. We have recently shown that timed GDNF gene therapy (dox-i-GDNF) in a lumbar plexus injury model promotes axon regeneration and improves electrophysiological recovery but fails to stimulate voluntary hind paw function. Here we report that dox-i-GDNF treatment following avulsion and re-implantation of cervical ventral roots leads to sustained motoneuron survival and recovery of voluntary function. These improvements were associated with a twofold increase in motor axon regeneration and enhanced reinnervation of the hand musculature. In this cervical model the distal hand muscles are located 6,5 cm from the reimplantation site, whereas following a lumber lesion this distance is twice as long. Since the first signs of muscle reinnervation are observed 6 weeks after the lesion, this suggests that regenerating axons reached the hand musculature before a critical state of chronic denervation has developed. These results demonstrate that the beneficial effects of timed GDNF-gene therapy are more robust following spinal nerve avulsion lesions that allow reinnervation of target muscles within a relatively short time window after the lesion. This study is an important step in demonstrating the potential of timed GDNF-gene therapy to enhance axon regeneration after neurosurgical repair of a severe proximal nerve lesion.

Citation

ID: 22690
Ref Key: eggers2019enhancedexperimental
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
22690
Unique Identifier:
S0014-4886(19)30186-4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet