Effect of PVDC on the Fire Performance of Ultra-Low Density Fiberboards (ULDFs)

Effect of PVDC on the Fire Performance of Ultra-Low Density Fiberboards (ULDFs)

Wu, Zhenzeng;Chen, Tingjie;Huang, Daobang;Wang, Wei;Xie, Yongqun;Wang, Hui;Wang, Xiaodong (Alice);
bioresources 2016 Vol. 11 pp. 8653-8663
284
wu2016effectbioresources

Abstract

Poly vinylidene chloride-vinyl chloride emulsions (PVDC) were added as a substitute for chlorinated paraffin (CP) in the preparation of ultra-low density fiberboards (ULDFs). The micromorphology and fire performance of ULDFs were investigated using a scanning electron microscope, limiting oxygen index instrument, and cone calorimeter. The results showed that PVDC specimens were coated with a regularly smooth film, while the distribution of CP inside CP specimens was uneven. The limiting oxygen index increased with the dosage of PVDC, then reached a plateau at 50 mL and 28%, slightly higher than CP specimens (27.3%). The peak of heat release rate, mean heat release rate, mean CO, and total smoke release of PVDC specimens was reduced 43.3%, 13.5%, 38.5%, and 51.5% lower than respective CP specimens, and with nearly the same total heat release (only 0.04 MJ/m2 higher). Thus, PVDC exhibited excellent heat-reducing and smoke-suppressing properties and could replace CP in ULDFs.

Citation

ID: 21817
Ref Key: wu2016effectbioresources
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
21817
Unique Identifier:
7097e906f7ab31203d4e0e3bbff0a545
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet