numerical modelling and study of parametric rolling for c11 containership in regular head seas using consistent strip theory

numerical modelling and study of parametric rolling for c11 containership in regular head seas using consistent strip theory

;Kaiye Hu;Rui Wang;Wenyang Duan;Wenhao Xu;Rui Deng;Shan Ma
atmospheric pollution research 2017 Vol. 68 pp. 135-156
177
hu2017brodogradnjanumerical

Abstract

In this paper, a numerical model was proposed to simulate the parametric rolling of ships in head seas. The method was developed in time-domain based on strip theory, in which a consistent way of estimating the radiation forces was applied using impulse response function method. To take the coupling effect into account, the heave and pitch motions were solved together with the rolling motion. Also, the Froude-Krylov forces and hydrostatic forces were evaluated on the instantaneously wetted surface of the ship, in order to model the time varied restoring rolling moment in waves. Based on the developed numerical model, the parametrically roll motions of C11 containership was simulated. The influence of roll damping was investigated using two different methods, and the numerical results were compared with model tests. The comparative study shows that results obtained by the proposed method generally agree well with experimental data. Discussions and possible improvements of the current numerical model were also presented in this paper, with regard to the numerical deviation between the numerical and experimental results when the wave steepness was larger than 0.04.

Citation

ID: 215080
Ref Key: hu2017brodogradnjanumerical
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
215080
Unique Identifier:
10.21278/brod68309
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet