Automatic identification and characterization of the epiretinal membrane in OCT images.

Automatic identification and characterization of the epiretinal membrane in OCT images.

Baamonde, Sergio;de Moura, Joaquim;Novo, Jorge;Charlón, Pablo;Ortega, Marcos;
Biomedical optics express 2019 Vol. 10 pp. 4018-4033
277
baamonde2019automaticbiomedical

Abstract

Optical coherence tomography (OCT) is a medical image modality that is used to capture, non-invasively, high-resolution cross-sectional images of the retinal tissue. These images constitute a suitable scenario for the diagnosis of relevant eye diseases like the vitreomacular traction or the diabetic retinopathy. The identification of the epiretinal membrane (ERM) is a relevant issue as its presence constitutes a symptom of diseases like the macular edema, deteriorating the vision quality of the patients. This work presents an automatic methodology for the identification of the ERM presence in OCT scans. Initially, a complete and heterogeneous set of features was defined to capture the properties of the ERM in the OCT scans. Selected features went through a feature selection process to further improve the method efficiency. Additionally, representative classifiers were trained and tested to measure the suitability of the proposed approach. The method was tested with a dataset of 285 OCT scans labeled by a specialist. In particular, 3,600 samples were equally extracted from the dataset, representing zones with and without ERM presence. Different experiments were conducted to reach the most suitable approach. Finally, selected classifiers were trained and compared using different metrics, providing in the best configuration an accuracy of 89.35%.

Citation

ID: 20276
Ref Key: baamonde2019automaticbiomedical
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
20276
Unique Identifier:
10.1364/BOE.10.004018
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet