evidence for the microbial degradation of imidacloprid in soils of cameron highlands

evidence for the microbial degradation of imidacloprid in soils of cameron highlands

;Nasrin Sabourmoghaddam;Mohamad Pauzi Zakaria;Dzolkhifli Omar
combinatorial chemistry and high throughput screening 2015 Vol. 14 pp. 182-188
276
sabourmoghaddam2015journalevidence

Abstract

Imidacloprid (1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine), with a novel mode of action is a recent systemic and contact insecticide with high activity against a wide range of pests. Continuous dispersion of this pesticide in the environment and its stability in soil results in environmental pollution which demands remediation. The present research was attempted to isolate and characterize imidacloprid degrading bacteria from vegetable farms of Cameron Highlands in Malaysia. The degradation ability of the isolates was tested in minimal salt medium (MSM) for a duration of 25 days and the selected strains were characterized based on their biochemical and molecular characteristics. Levels of imidacloprid in MSM medium were analyzed by high performance liquid chromatography (HPLC). Among 50 soil bacterial isolates Bacillus sp., Brevibacterium sp., Pseudomonas putida F1, Bacillus subtilis and Rhizobium sp. were able to degrade 25.36–45.48% of the initial amount of imidacloprid at the concentration of 25 mg L−1 in C limited media. Brevibacterium sp. was isolated from organic farms that had never been exposed to imidacloprid while the other farms had previously been exposed to different levels of imidacloprid. All bacteria introduced in this study were among the first reports of imidacloprid degrading isolates in C limited media from tropical soil. Therefore, the results of this study demonstrate the effectiveness of using soil bacteria for microbial degradation of imidacloprid. These findings suggest that these strains may be promising candidates for bioremediation of imidacloprid-contaminated soils.

Citation

ID: 181985
Ref Key: sabourmoghaddam2015journalevidence
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
181985
Unique Identifier:
10.1016/j.jssas.2014.03.002
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet