adsorption of tx-100 and sdbs on the surface of alumina and maghemite nanoparticles from aqueous solutions

adsorption of tx-100 and sdbs on the surface of alumina and maghemite nanoparticles from aqueous solutions

;R. R. Mansurov;A. P. Safronov;N. V. Lakiza;D. V. Leiman
archives of agronomy and soil science 2014 Vol. 1 pp. 50-55
154
mansurov2014chimicaadsorption

Abstract

Adsorption equilibriums in aqueous aluminum and iron oxides nanosuspensions stabilized by SDBS and TX-100 were investigated using UV spectrophotometry. It was established that the non-ionic surfactant TritonX-100 is not adsorbed from aqueous solution on a hydrophilic surface of both aluminum and iron oxide nanoparticles. At the same time adsorption of the anionic surfactant SDBS was observed in both oxides nanoparticles. In the investigated range of concentrations adsorption isotherms SDBS from aqueous solution on the surfaces of nanoparticles Al2O3 and γ-Fe2O3 not reach saturation. The share of the particles surface occupied by surfactant molecules were estimated based on the value of an area of molecules SDBS in the adsorption layer, which was derived from the isotherm of surface tension (0.10 nm2). The calculations showed that at the investigated concentrations SDBS Al2O3 employed approximately 30 % of surface of nanoparticles, and for γ-Fe2O3 – up to 10%.

Citation

ID: 179730
Ref Key: mansurov2014chimicaadsorption
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
179730
Unique Identifier:
10.15826/chimtech.2014.1.2.696
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet