kinetic continuous opinion dynamics model on two types of archimedean lattices

kinetic continuous opinion dynamics model on two types of archimedean lattices

;Francisco W. S. Lima
journal of biomaterials science polymer edition 2017 Vol. 5 pp. -
239
lima2017frontierskinetic

Abstract

Here, the critical properties of kinetic continuous opinion dynamics model are studied on (4, 6, 12) and (4, 82) Archimedean lattices. We obtain pc and the critical exponents from Monte Carlo simulations and finite size scaling. We found out the values of the critical points and Binder cumulant that are pc = 0.086(3) and O4*=0.59(2) for (4, 6, 12); and pc = 0.109(3) and O4*=0.606(5) for (4, 82) lattices and also the exponent ratios β/ν, γ/ν, and 1/ν are, respectively: 0.23(7), 1.43(5), and 0.60(3) for (4, 6, 12); and 0.149(4), 1.56(4), and 0.94(4) for (4, 82) lattices. Our new results disprove of the Grinstein criterion.

Citation

ID: 177796
Ref Key: lima2017frontierskinetic
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
177796
Unique Identifier:
10.3389/fphy.2017.00047
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet