Failures of Flexible Diaphragm Couplings of Power Take Off (PTO) Shafts of an Aircraft by Surface Discontinuity, Controlled by Stress Concentration or Stress Intensity Factor

Failures of Flexible Diaphragm Couplings of Power Take Off (PTO) Shafts of an Aircraft by Surface Discontinuity, Controlled by Stress Concentration or Stress Intensity Factor

Mrityunjoy Hazra;Satyapal Singh;
international journal of engineering materials and manufacture 2020 Vol. 5 pp. 29-39
259
Hazra2020internationalFailures

Abstract

Failures of two power take off (PTO) shafts of an aircraft have been analysed. Two shafts, one each developed by two different manufacturers failed separately during power run endurance test conducted at room temperature and ambient normal atmosphere. In both the cases, cracks were observed on the outer diaphragm disc. One shaft showed cracking in the engine side, while the other one exhibited cracks in the aircraft mounting accessory gearbox (AMAGB) side. Chemical analysis, microstructure and hardness evaluation indicate that the diaphragm material of the shafts is Ti-6Al-4V alloy used in solution treated and aged condition, as per the desired specification AMS 4928. Microstructural in-homogeneity, possibly a result of improper forging, was observed in diaphragm material of both the shafts. Additionally, surface discontinuities induced by forging and subsequent insufficient machining were noticed on the diaphragms. The diaphragms failed by fatigue with cracks possibly nucleating at surface discontinuities. Discontinuities with lower availability in one shaft led to somewhat increased life (466 million cycles) as compared to the life (104 million cycles) of the other shaft. Another possible factor contributing to lower life in the later shaft is the presence of higher quantity of nitrogen rich inclusions. Controlling factor triggering the failure of diaphragm of shaft with lower life seems to be the available high stress level along the rim periphery, while that for shaft with higher life is presence of few localized sharp surface discontinuities.

Keywords

Citation

ID: 171397
Ref Key: Hazra2020internationalFailures
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
171397
Unique Identifier:
113
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet