the coordination compounds of cobalt (ii, iii) with dithiocarbamic acid derivatives — modificators of hydrolytic enzymes activity

the coordination compounds of cobalt (ii, iii) with dithiocarbamic acid derivatives — modificators of hydrolytic enzymes activity

;L. D. Varbanets;О. V. Matselyukh; N. А. Nidyalkova; Е. V. Аvdiyuk;А. V. Gudzenko;I. I. Seifullina; G. N. Маsаnоvets;N. V. Khitrich
third world quarterly 2013 Vol. 6 pp. 73-80
131
varbanets2013biotechnologiathe

Abstract

Chloride, bromide and isothiocyanate complexes of cobalt(II) with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1)–(12), and also complexes of cobalt(II, Ш) with derivatives of morpholine-4-carbodithioic acid (13)–(18) have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш) compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II) complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1)–(12) on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioato)cobalt(ІІІ) (14) and products of its interaction with halogens (15)–(17), causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II) complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II) complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш) complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

Citation

ID: 168346
Ref Key: varbanets2013biotechnologiathe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
168346
Unique Identifier:
10.15407/biotech6.01.073
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet