gate-switchable rectification in isotype van der waals heterostructure of multilayer mote2/sns2 with large band offsets

gate-switchable rectification in isotype van der waals heterostructure of multilayer mote2/sns2 with large band offsets

;Seonyeong Kim;Hyewon Du;Taekwang Kim;Somyeong Shin;Hyeon-kyo Song;Hansung Kim;Dain Kang;Chang-Won Lee;Sunae Seo
Human factors 2020 Vol. 4 pp. 1-7
369
kim2020npjgate-switchable

Abstract

Abstract Despite intensive studies on van der Waals heterostructures based on two-dimensional layered materials, isotype vdW heterojunctions, which consist of two different semiconductors with the same majority carrier, have received little attention. We demonstrate an n–n isotype field-effect heterojunction device composed of multilayer moly ditelluride (MoTe2) and tin disulfide (SnS2). The carrier transport flowing through the n-MoTe2/n-SnS2 heterojunction exhibits a clear rectifying behavior exceeding 103, even at a moderate source–drain voltage of 1 V in ambient environment. Owing to the large band offsets between the two materials, a potential barrier exceeding ~1 eV is formed, which is verified by comparing a numerical solution of Poisson’s equation and experimental data. In contrast to the conventional p–n heterostructure operating by diffusion of the minority carrier, we identify the carrier transport is governed by the majority carrier via the thermionic emission and tunneling-mediated process through the potential barrier. Furthermore, the gate voltage can completely turn off the device and even enhance the rectification. A ternary inverter based on the isotype MoTe2/SnS2 heterojunction and a SnS2 channel transistor is demonstrated for potential multivalued logic applications. Our results suggest that the isotype vdW heterojunction will become an able candidate for electronic or optoelectronic devices after suitable band engineering and design optimization.

Citation

ID: 153144
Ref Key: kim2020npjgate-switchable
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
153144
Unique Identifier:
10.1038/s41699-020-0149-8
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet