estimation when the covariance structure of the variable of interest is positive definite

estimation when the covariance structure of the variable of interest is positive definite

;Théberge Alain
natural product reports 2017 Vol. 33 pp. 275-299
146
alain2017journalestimation

Abstract

Generalized regression (GREG) estimation uses a model that assumes that the values of the variable of interest are not correlated. An extension of the GREG estimator to the case where the vector of interest has a positive definite covariance structure is presented in this article. This extension can be translated to the calibration estimators. The key to this extension lies in a generalization of the Horvitz-Thompson estimator which, in some sense, also assumes that the values of the variable of interest are not correlated. The Godambe-Joshi lower bound is another result which assumes a model with no correlation. This is also generalized to a vector of interest with a positive definite covariance structure, and it is shown that the generalized calibration estimator asymptotically attains this generalized lower bound. Properties of the new estimators are given, and they are compared with the Horvitz-Thompson estimator and the usual calibration estimator. The new estimators are applied to the Canadian Reverse Record Check survey and to the problem of variance estimation.

Citation

ID: 149555
Ref Key: alain2017journalestimation
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
149555
Unique Identifier:
10.1515/jos-2017-0014
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet