Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells.

Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells.

Ou, Minglin;Li, Chunhong;Tang, Donge;Xue, Wen;Xu, Yong;Zhu, Peng;Li, Bo;Xie, Jiansheng;Chen, Jiejing;Sui, Weiguo;Yin, Lianghong;Dai, Yong;
stem cell research & therapy 2019 Vol. 10 pp. 251
303
ou2019genotypingstem

Abstract

Autosomal dominant osteopetrosis type II (ADO2) is a rare human genetic disease that has been broadly studied as an important osteopetrosis model; however, there are no disease-specific induced pluripotent stem cells (ADO2-iPSCs) that may be valuable for understanding the pathogenesis and may be a potential source of cells for autologous cell-based therapies.To generate the first human ADO2-iPSCs from a Chinese family with ADO2 and to identify their characteristics, blood samples were collected from the proband and his parents and were used for genotyping by whole-exome sequencing (WES); the urine-derived cells of the proband were reprogrammed with episomal plasmids that contained transcription factors, such as KLF4, OCT4, c-MYC, and SOX2. The proteome-wide protein quantification and lysine 2-hydroxyisobutyrylation detection of the ADO2-iPSCs and normal control iPSCs (NC-iPSCs) were performed by high-resolution LC-MS/MS and bioinformatics analysis.WES with filtering strategies identified a mutation in CLCN7 (R286W) in the proband and his father, which was absent in the proband's mother and the healthy controls; this was confirmed by Sanger sequencing. The ADO2-iPSCs were successfully generated, which carried a normal male karyotype (46, XY) and the mutation of CLCN7 (R286W); the ADO2-iPSCs positively expressed alkaline phosphatase and other surface markers; and no vector and transgene were detected. The ADO2-iPSCs could differentiate into all three germ cell layers, both in vitro and in vivo. The proteomic profiling revealed similar expression of pluripotency markers in the two cell lines and identified 7405 proteins and 3664 2-hydroxyisobutyrylated peptides in 1036 proteins in the ADO2-iPSCs.Our data indicated that the mutation CLCN7 (R286W) may be a cause of the osteopetrosis family. The generated vector-free and transgene-free ADO2-iPSCs with known proteomic characteristics may be valuable for personalized and cell-based regenerative medicine in the future.

Citation

ID: 14755
Ref Key: ou2019genotypingstem
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
14755
Unique Identifier:
10.1186/s13287-019-1369-8
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet