Abstract
Developing inexpensive and stable photocatalysts without noble metals, yet remarkably enhancing the photocatalytic activities, is highly needed. Here, a novel carbon and cerium co-doped porous g-CN (C/Ce-CN) has been successfully prepared through thermal polymerization of the supramolecular aggregation. The morphologies, chemical structures, optical and photoelectrochemical properties of the synthesized photocatalysts were analyzed via a series of characterization measurements. Experimental results indicated that C/Ce-CN showed remarkably enhanced photocatalytic activity of TC and RhB degradation, which is about 2.6 and 2.4 times higher than that of pristine CN, and it also exhibited a good stability. Compared with bare CN, the enhanced performance of C/Ce-CN is mainly attributed to the stronger utilization rate of visible light, the rapider charge transfer rate, the longer lifetime of carriers and the larger surface specific area. The main intermediates in degradation process of antibiotics were tested by the HPLC-MS. Finally, the possible photocatalytic degradation pathways and mechanisms were proposed.
Citation
ID:
14594
Ref Key:
wu2019supramolecularjournal