an adaptive weighted pearson similarity measurement method for load curve clustering

an adaptive weighted pearson similarity measurement method for load curve clustering

;Rongheng Lin;Budan Wu;Yun Su
acs combinatorial science 2018 Vol. 11 pp. 2466-
149
lin2018energiesan

Abstract

Load curve data from advanced metering infrastructure record the consumers’ behavior. User consumption models help one understand a more intelligent power provisioning and clustering the load data is one of the popular approaches for building these models. Similarity measurements are important in the clustering model, but, load curve data is a time series style data, and traditional measurement methods are not suitable for load curve data. To cluster the load curve data more accurately, this paper applied an enhanced Pearson similarity for load curve data clustering. Our method introduces the ‘trend alteration point’ concept and integrates it with the Pearson similarity. By introducing a weight for Pearson distance, this method helps to keep the whole contour of the load data and the partial similarity. Based on the weighed Pearson distance, a weighed Pearson-based hierarchy clustering algorithm is proposed. Years of load curve data are used for evaluation. Several user consumption models are found and analyzed. Results show that the proposed method improves the accuracy of load data clustering.

Citation

ID: 134682
Ref Key: lin2018energiesan
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
134682
Unique Identifier:
10.3390/en11092466
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet