3d data acquisition for indoor assets using terrestrial laser scanning

3d data acquisition for indoor assets using terrestrial laser scanning

;S. Y. Lee;Z. Majid;H. Setan
kolner zeitschrift fur soziologie und sozialpsychologie 2013 Vol. II-2/W1 pp. 221-226
197
lee2013isprs3d

Abstract

The newly development of technology clearly shows an improvement of three-dimension (3D) data acquisition techniques. The requirements of 3D information and features have been obviously increased during past few years in many related fields. Generally, 3D visualization can provide more understanding and better analysis for making decision. The need of 3D GIS also pushed by the highly demand of 3D in geospatial related applications as well as the existing fast and accurate 3D data collection techniques. This paper focuses on the 3D data acquisition by using terrestrial laser scanning. In this study, Leica C10 terrestrial laser scanner was used to collect 3D data of the assets inside a computer laboratory. The laser scanner device is able to capture 3D point cloud data with high speed and high accuracy. A series of point clouds was produced from the laser scanner. However, more attention must be paid during the point clouds data processing, 3D modelling, and analysis of the laser scanned data. Hence, this paper will discuss about the data processing from 3D point clouds to 3D models. The processing of point cloud data divided into pre-processing (data registration and noise filter) and post-processing (3D modelling). During the process, Leica Cyclone 7.3 was used to process the point clouds and SketchUp was used to construct the 3D asset models. Afterward, the 3D asset models were exported to multipatch geometry format, which is a 3D GIS-ready format for displaying and storing 3D model in GIS environment. The final result of this study is a set of 3D asset models display in GIS-ready format since GIS can provides the best visual interpretation, planning and decision making process. This paper shows the 3D GIS data could be produced by laser scanning technology after further processing of point cloud data.

Citation

ID: 134595
Ref Key: lee2013isprs3d
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
134595
Unique Identifier:
10.5194/isprsannals-II-2-W1-221-2013
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet