synthesis of reusable silica nanosphere-supported pt(iv) complex for formation of disulfide bonds in peptides

synthesis of reusable silica nanosphere-supported pt(iv) complex for formation of disulfide bonds in peptides

;Xiaonan Hou;Xiaowei Zhao;Yamei Zhang;Aiying Han;Shuying Huo;Shigang Shen
Journal of ethnopharmacology 2017 Vol. 22 pp. 338-
460
hou2017moleculessynthesis

Abstract

Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV) complex (SiO2@TPEA@Pt(IV)); TPEA: N-[3-(trimethoxysilyl)propyl]ethylenediamine) was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM) and chemical mapping results for the Pt(II) intermediates and for SiO2@TPEA@Pt(IV) show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS). The Pt(IV) loaded on SiO2@TPEA@Pt(IV) was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV) was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC). In addition, peptide 1 (Ac-CPFC-NH2) was utilized to study the reusability of SiO2@TPEA@Pt(IV). No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV) after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

Keywords

Citation

ID: 130669
Ref Key: hou2017moleculessynthesis
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
130669
Unique Identifier:
10.3390/molecules22020338
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet