Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells.

Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells.

Holloran, Sean M;Nosirov, Bakhtiyor;Walter, Katherine R;Trinca, Gloria M;Lai, Zhao;Jin, Victor X;Hagan, Christy R;
molecular and cellular endocrinology 2020 pp. 110859
261
holloran2020reciprocalmolecular

Abstract

Progesterone and prolactin are two key hormones involved in development and remodeling of the mammary gland. As such, both hormones have been linked to breast cancer. Despite the overlap between biological processes ascribed to these two hormones, little is known about how co-expression of both hormones affects their individual actions. Progesterone and prolactin exert many of their effects on the mammary gland through activation of gene expression, either directly (progesterone, binding to the progesterone receptor [PR]) or indirectly (multiple transcription factors being activated downstream of prolactin, most notably STAT5). Using RNA-seq in T47D breast cancer cells, we characterized the gene expression programs regulated by progestin and prolactin, either alone or in combination. We found significant crosstalk and fine-tuning between the transcriptional programs executed by each hormone independently and in combination. We divided and characterized the transcriptional programs into four broad categories. All crosstalk/fine-tuning shown to be modulated by progesterone was dependent upon the expression of PR. Moreover, PR was recruited to enhancer regions of all regulated genes. Interestingly, despite the canonical role for STAT5 in transducing prolactin-signaling in the normal and lactating mammary gland, very few of the prolactin-regulated transcriptional programs fine-tuned by progesterone in this breast cancer cell line model system were in fact dependent upon STAT5. Cumulatively, these data suggest that the interplay of progesterone and prolactin in breast cancer impacts gene expression in a more complex and nuanced manner than previously thought, and likely through different transcriptional regulators than those observed in the normal mammary gland. Studying gene regulation when both hormones are present is most clinically relevant, particularly in the context of breast cancer.

Citation

ID: 106951
Ref Key: holloran2020reciprocalmolecular
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
106951
Unique Identifier:
S0303-7207(20)30159-3
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet