Identification of Chymotrypsin-like Protease Inhibitors of SARS-CoV-2 Integrated Computational Approach.

Identification of Chymotrypsin-like Protease Inhibitors of SARS-CoV-2 Integrated Computational Approach.

Khan, Salman Ali;Zia, Komal;Ashraf, Sajda;Uddin, Reaz;Ul-Haq, Zaheer;
Journal of biomolecular structure & dynamics 2020 pp. 1-13
319
khan2020identificationjournal

Abstract

Recently, the world has witnessed outbreak of a novel Coronavirus (SARS-CoV-2), the virus which initially emerged in Wuhan, China has now made its way to a large part of the world, resulting in a public emergency of international concern. The functional importance of Chymotrypsin-like protease (3CL) in viral replication and maturation turns it into an attractive target for the development of effective antiviral drugs against SARS and other coronaviruses. At present, there is no standard drug regime nor any vaccine available against the infection. The rapid development and identification of efficient interventions against SARS-CoV-2 remains a major challenge. Based on the available knowledge of closely related coronavirus and their safety profiles, repurposing of existing antiviral drugs and screening of available databases is considered a near term strategic and economic way to contain the SARS-CoV-2 pandemic. Herein, we applied computational drug design methods to identify Chymotrypsin-like protease inhibitors from FDA approved antiviral drugs and our in-house database of natural and drug-like compounds of synthetic origin. As a result three FDA approved drugs ( Remdesivir, Saquinavir and Darunavir) and two natural compounds (. flavone and coumarine derivatives) were identified as promising hits. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior, stability of protein-ligand contact, and binding affinity of the hit compounds. Our results indicate that the identified compounds can inhibit the function of Chymotrypsin-like protease (3CL) of Coronavirus. Considering the severity of the spread of coronavirus, the current study is in-line with the concept of finding the new inhibitors against the vital pathway of the corona virus to expedite the process of drug discovery.

Citation

ID: 102894
Ref Key: khan2020identificationjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
102894
Unique Identifier:
10.1080/07391102.2020.1751298
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet