Abstract
We outline a methodology for efficiently computing the electromagnetic response of molecular ensembles. The methodology is based on the link that we establish between quantum-chemical simulations and the transfer matrix (T-matrix) approach, a common tool in physics and engineering. We exemplify and analyze the accuracy of the methodology by computing the T-matrix of a cross-like arrangement of four copies of a chiral molecule from the time-dependent Hartree-Fock theory simulation data of a single molecule, and then computing the circular dichroism of the cross. The results are in very good agreement with full quantum-mechanical calculations on the cross. Importantly, the choice of computing circular dichroism is arbitrary: Any kind of electromagnetic response of an object can be computed from its T-matrix. We also show, by means of another example, how the methodology can be used to predict experimental measurements on a molecular material of macroscopic dimensions. This is possible because, once the T-matrices of the individual components of an ensemble are known, the electromagnetic response of the ensemble can be efficiently computed. This holds for arbitrary arrangements of a large number of molecules, as well as for periodic or aperiodic molecular arrays.
Citation
ID:
101671
Ref Key:
fernandezcorbaton2020computationchemphyschem