Using adaptive neuro-fuzzy inference system and multiple linear regression to estimate orange taste.

Using adaptive neuro-fuzzy inference system and multiple linear regression to estimate orange taste.

Mokarram, Marzieh;Amin, Hosein;Khosravi, Mohammad R;
Food science & nutrition 2019 Vol. 7 pp. 3176-3184
354
mokarram2019usingfood

Abstract

In this research, some characteristic qualities of orange fruits such as vitamin C and acid content; weight; fruit and skin diameter; and red (R), green (G), and blue (B) values of the RGB color model for 70 samples were used to predict the taste of orange grown in Darab, southeast of Fars Province, Iran, by multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS). To use MLR, firstly the most important input data were selected, and then, the best model to predict the taste of orange was applied. In this research, methodology of ANFIS consisted of selection of dependent orange taste, fuzzification, fuzzy inference rule, membership function, and defuzzification process. The predictive capability of these models was evaluated by various descriptive statistical indicators such as mean square error () and determination coefficient (). The results showed that the prediction performance of the MLR model has a strong significant relationship between orange taste and vitamin C (0.897), red color (0.901), and blue color (0.713). Also, the results of ANFIS model showed that with low error for train and check data increased the most accuracy for prediction of orange taste. Moreover, the results indicated that the success rate of taste determination for orange is higher by using ANFIS compared to the MLR. This research was to provide valuable information for orange taste.

Citation

ID: 100257
Ref Key: mokarram2019usingfood
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
100257
Unique Identifier:
10.1002/fsn3.1149
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet