A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms.

A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms.

Shi, Yin;Li, Xiaoni;
Heliyon 2019 Vol. 5 pp. e02997
276
shi2019aheliyon

Abstract

Bibliometric analysis is an effective method to carry out quantitative study of academic output to address the research trends on a given area of investigation through analysing existing documents. This paper aims to explore the application of intelligent techniques in bankruptcy predictions so as to assess its progress and describe the research trend through bibliometric analysis over the last five decades. The results indicate that, although there is a significant increase in publication number since the 2008 financial crisis, the collaboration among authors is weak, especially at the international dimension. Also, the findings provide a comprehensive view of interdisciplinary research on bankruptcy modelling in finance, business management and computer science fields. The authors sought to contribute to the theoretical development of bankruptcy prediction modeling by bringing new knowledge and key insights. Artificial intelligent techniques are now serving as important alternatives to statistical methods and demonstrate very promising results. This paper has both theoretical and practical implications. First, it provides insights for scholars into the theoretical evolution and intellectual structure for conducting future research in this field. Second, it sheds light on identifying under-explored machine learning techniques applied in bankruptcy prediction which can be crucial in management and decision-making for corporate firm managers and policy makers.

Citation

ID: 91301
Ref Key: shi2019aheliyon
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
91301
Unique Identifier:
10.1016/j.heliyon.2019.e02997
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet