A hydro-thermal-geochemical modeling framework to simulate reactive transport in a waste coal area under amended and non-amended conditions.

A hydro-thermal-geochemical modeling framework to simulate reactive transport in a waste coal area under amended and non-amended conditions.

Xu, Yi;Plaza, Fernando J;Liang, Xu;Davis, Tyler W;Nichols, Judodine;Fu, Jaw K;Koranchie-Boah, Peter;
Heliyon 2020 Vol. 6 pp. e02803
392
xu2020aheliyon

Abstract

Acid mine drainage (AMD) is a major cause of water quality deterioration across watersheds where acidic coal refuse (CR) piles are located. The oxidation of pyrite (the most common sulfide mineral), found in many of the CR piles, releases major ions, such as Fe, Fe, , and H into the environment. Bauxite residue (BR), commonly called alkaline clay (AC), a highly alkaline byproduct of the alumina refining process, can be combined with coal mine refuse to reduce and potentially eliminate the AMD problem associated with waste coal piles. A new hydro-thermal-geochemical model is developed in this study to simulate the reactive transport processes in AMD-treated areas. First, the model is tested at the experimental plots located within a CR pile in Greene County, Pennsylvania (USA), where two of the plots are used to show the impact of BR on CR piles. Then, the model capabilities are tested at a mine-impacted watershed in Indiana County, Pennsylvania (USA). In general, the model not only captures the patterns of both soil moisture, soil temperature and chemical concentrations at plots scales but it is also successfully implemented at a watershed scale. In conclusion, this study shows encouraging results regarding the AMD remediation simulation at different spatial scales.

Citation

ID: 78893
Ref Key: xu2020aheliyon
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
78893
Unique Identifier:
10.1016/j.heliyon.2019.e02803
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet