Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands

Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands

Balakrishnan, Senthilkumar;Duraisamy, Senbagam;Kasi, Murugan;Kandasamy, Selvam;Sarkar, Rajesh;Kumarasamy, Anbarasu;
Heliyon 2019 Vol. 5 pp. e01566-
379
balakrishnan2019synthesesheliyon

Abstract

Organic molecule dithiocarbamate transition metal complexes are novel and very attractive pharmaceutical targets for the management and control of antibiotic resistant bacteria. The direct reaction has synthesized new transition metal nickel (II), copper (II) complexes of potassium morpholine dithiocarbamate (K+C5H8NOS2−) ligands and characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), as well as NMR physicochemical techniques. Antibacterial bioefficacy of the ligand and its metal complexes has been investigated in vitro on the growth of Gram-positive (Staphylococcus aureus MTCC 737, Bacillus cereus MTCC 1272) and the Gram-negative (Listeria monocytogenes MTCC 657, Shigella flexeneri MTCC 1457) bacteria. The obtained electronic spectral bands are characteristic and consistent with the proposed composition of the ligand as well as its metal complexes. It also provides a further example of the bidentate coordination of dithiocarbamate ligands. Absorption peak values of FTIR are characteristic of the ligand as well as dithiocarbamate group molecules and exhibit their metal coordination. NMR 1H signal variations also correlate with the coordination mediated chemical shifts. Both the metal complexes showed significant antibacterial activity. However, enhanced antimicrobial activity of the ligands than metal complexes against Gram positive and Gram negative bacteria were observed. Thus, further study on this approach could pave a way for the development of dithiocarbamate-metal complex based antibacterial agent. Keyword: Pharmaceutical chemistry

Citation

ID: 55248
Ref Key: balakrishnan2019synthesesheliyon
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
55248
Unique Identifier:
49ea177df90da3cad248843cf40d6360
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet