Study on Paramagnetic Interactions of (CH3NH3)2CoBr4 Hybrid Perovskites Based on Nuclear Magnetic Resonance (NMR) Relaxation Time
Ae Ran Lim;Sun Ha Kim;Lim, Ae Ran;Kim, Sun Ha and
molecules1970Vol. 24pp. 2895-
314
ae1970studymolecules
Abstract
The thermal properties of organic–inorganic (CH3NH3)2CoBr4 crystals were investigated using differential scanning calorimetry and thermogravimetric analysis. The phase transition and partial decomposition temperatures were observed at 460 K and 572 K. Nuclear magnetic resonance (NMR) chemical shifts depend on the local field at the site of the resonating nucleus. In addition, temperature-dependent spin–lattice relaxation times (T1ρ) were measured using 1H and 13C magic angle spinning NMR to elucidate the paramagnetic interactions of the (CH3NH3)+ cations. The shortening of 1H and 13C T1ρ of the (CH3NH3)2CoBr4 crystals are due to the paramagnetic Co2+ effect. Moreover, the physical properties of (CH3NH3)2CoBr4 with paramagnetic ions and those of (CH3NH3)2CdBr4 without paramagnetic ions are reported and compared.