Development of a predictive model for estimating the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids using support vector regression.

Development of a predictive model for estimating the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids using support vector regression.

Alade, Ibrahim Olanrewaju;Abd Rahman, Mohd Amiruddin;Bagudu, Aliyu;Abbas, Zulkifly;Yaakob, Yazid;Saleh, Tawfik A;
Heliyon 2019 Vol. 5 pp. e01882
249
alade2019developmentheliyon

Abstract

The specific heat capacity of nanofluids is a fundamental thermophysical property that measures the heat storage capacity of the nanofluids. is usually determined through experimental measurement. As it is known, experimental procedures are characterised with some complexities, which include, the challenge of preparing stable nanofluids and relatively long periods to conduct experiments. So far, two correlations have been developed to estimate the The accuracies of these models are still subject to further improvement for many nanofluid compositions. This study presents a four-input support vector regression (SVR) model hybridized with a Bayesian algorithm to predict the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. The bayesian algorithm was used to obtain the optimum SVR hyperparameters. 189 experimental data collected from published literature was used for the model development. The proposed model exhibits low average absolute relative deviation (AARD) and a high correlation coefficient (r) of 0.40 and 99.53 %, respectively. In addition, we analysed the accuracies of the existing analytical models on the considered nanofluid compositions. The model based on the thermal equilibrium between the nanoparticles and base fluid (model II) show good agreement with experimental results while the model based on simple mixing rule (model I) overestimated the specific heat capacity of the nanofluids. To further validate the superiority of the proposed technique over the existing analytical models, we compared various statistical errors for the three models. The AARD for the BSVR, model II, and model I are 0.40, 0.82 and 4.97, respectively. This clearly shows that the model developed has much better prediction accuracy than existing models in predicting the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. We believe the presented model will be important in the design of nanofluid-based applications due to its improved accuracy.

Citation

ID: 32392
Ref Key: alade2019developmentheliyon
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
32392
Unique Identifier:
10.1016/j.heliyon.2019.e01882
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet