Stock selection with random forest: An exploitation of excess return in the Chinese stock market.

Stock selection with random forest: An exploitation of excess return in the Chinese stock market.

Tan, Zheng;Yan, Ziqin;Zhu, Guangwei;
Heliyon 2019 Vol. 5 pp. e02310
363
tan2019stockheliyon

Abstract

In recent years, a variety of research fields, including finance, have begun to place great emphasis on machine learning techniques because they exhibit broad abilities to simulate more complicated problems. In contrast to the traditional linear regression scheme that is usually used to describe the relationship between the stock forward return and company characteristics, the field of finance has experienced the rapid development of tree-based algorithms and neural network paradigms when illustrating complex stock dynamics. These nonlinear methods have proved to be effective in predicting stock prices and selecting stocks that can outperform the general market. This article implements and evaluates the robustness of the random forest (RF) model in the context of the stock selection strategy. The model is trained for stocks in the Chinese stock market, and two types of feature spaces, fundamental/technical feature space and pure momentum feature space, are adopted to forecast the price trend in the long run and the short run, respectively. It is evidenced that both feature paradigms have led to remarkable excess returns during the past five out-of-sample period years, with the Sharpe ratios calculated to be 2.75 and 5 for the portfolio net value of the multi-factor space strategy and momentum space strategy, respectively. Although the excess return has weakened in recent years with respect to the multi-factor strategy, our findings point to a less efficient market that is far from equilibrium.

Citation

ID: 24443
Ref Key: tan2019stockheliyon
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
24443
Unique Identifier:
10.1016/j.heliyon.2019.e02310
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet