Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity

Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity

Maltabe, Violetta A.;Barka, Eleonora;Kontonika, Marianthi;Florou, Dimitra;Kouvara-Pritsouli, Maria;Roumpi, Maria;Agathopoulos, Simeon;Kolettis, Theofilos M.;Kouklis, Panos;
stem cells international 2016 Vol. 2016 pp. -
289
maltabe2016isolationstem

Abstract

Embryonic Stem (ES) or induced Pluripotent Stem (iPS) cells are important sources for cardiomyocyte generation, targeted for regenerative therapies. Several in vitro protocols are currently utilized for their differentiation, but the value of cell-based approaches remains unclear. Here, we characterized a cardiovascular progenitor population derived during ES differentiation, after selection based on VE-cadherin promoter (Pvec) activity. ESCs were genetically modified with an episomal vector, allowing the expression of puromycin resistance gene, under Pvec activity. Puromycin-surviving cells displayed cardiac and endothelial progenitor cells characteristics. Expansion and self-renewal of this cardiac and endothelial dual-progenitor population (CEDP) were achieved by Wnt/β-catenin pathway activation. CEDPs express early cardiac developmental stage-specific markers but not markers of differentiated cardiomyocytes. Similarly, CEDPs express endothelial markers. However, CEDPs can undergo differentiation predominantly to cTnT+ (~47%) and VE-cadherin+ (~28%) cells. Transplantation of CEDPs in the left heart ventricle of adult rats showed that CEDPs-derived cells survive and differentiate in vivo for at least 14 days after transplantation. A novel, dual-progenitor population was isolated during ESCs differentiation, based on Pvec activity. This lineage can self-renew, permitting its maintenance as a source of cardiovascular progenitor cells and constitutes a useful source for regenerative approaches.

Citation

ID: 14777
Ref Key: maltabe2016isolationstem
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
14777
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet