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Abstract

Silver  nanoparticles  (AgNPs)  have been extensively studied by researchers  due to  their  unique
properties such as size, shape, optical, antimicrobial and electrical properties. A variety of preparation
methods have been reported for the synthesis of silver nanoparticles, including laser ablation, gamma
irradiation, chemical reduction, electron irradiation, microwave processing, photosynthetic methods
and biological  synthetic  methods.  AgNPs have widespread application in  wastewater  treatment,
disease treatment,  animal husbandry, fisheries and as antibacterial and antifungal agents but the
toxicity of chemically synthesized AgNPs in biological system remains the concern which depends
on  the  morphology  of  AgNPs.  This  review  provides  a  comprehensive  insight  to  the  various
techniques notably, physical, chemical and biological methods used to synthesize silver NPs. The aim
of this review article is therefore to reflect the benefits of the biological techniques used for the
synthesis of silver NPs and also describes some fundamental issues about non-biological techniques.
 

Keywords: Toxicity, Silver Nanoparticles, Chemical Synthesis, Biological Synthesis, Nanoparticle
Synthesis, Physical Synthesis

Nanotechnology is a branch of science, which deals
the  matter  at  Nano  scale.  It  is  a  rapidly  growing
technology and has gained interest in the last decade
due to the history of its wide applications. It is a multi-
disciplinary field and was first  revealed by Richard
Feynman  in  1959  [1].  In  1974  Norio  Tanaguchi
defined nanotechnology as “being able to manipulate a
single nanoscale object” [2]. “Nano” is a word, which
means one-billionth of  physical  unit  (I-e 1nm).  Till
now  there  is  no  agreement  on  the  definition  of
nanotechnology [3].  A nanometer  (nm) is  a  unit  of
measurement that is equal to one billionth of a meter.
Therefore,  nanotechnology  deals  with  the  study  of
nanomaterials, which have a size between 1 to 100 nm
[4]. Nanotechnology may be defined as “the synthesis
and application of materials by scientific knowledge to
manipulate in the nanoscale (1-100 nm)” [1], by the
United States National Nanotechnology Initiative [5].
However,  some  slight  changes  are  existing  in  this
definition such as the International Organization for
Standardization  (ISO),  has  claimed  that  the
nanomaterials  can  also  be  found  in  large  size  and
sometimes  maybe  1000  nm [6].  The  unique  initial
chemical,  biological,  and  physical  properties  of
nanoparticles enable them to act as a suitable agent to

perform many functions at the cellular and subcellular
levels [7]. Paul Ehlirch, for the first time, introduced
the concept of  targeted therapy or so-called “magic
bullets” which means to intended cellular level target
with damaging healthy cells [5]. The idea of “magic
bullets”  was  further  fused  into  the  concept  of
nanoparticles [8].

Nanoparticles (NPs) are said to be raw materials used
in nanotechnology [9]. These raw materials (NPs) are
found in different types e.g. gold, copper, iron, nickel,
and  silver  nanoparticles  (AgNPs)  [10].  In  the  past,
gold was only known as metal, but later on, with the
advancement of nanotechnology, it was realized that
the physiochemical properties of gold could make it an
ideal material for the synthesis of gold nanoparticles
[11]. Gold nanoparticles have gained an attraction due
to their chemical and biological properties [12]. Nickel
and  copper  have  been  investigated  for  different
applications [9]. However, concerns have been stated
that  nickel  nanoparticles  might  play  a  key  role  in
biological activities [13]. Iron nanoparticles (FeNPs)
are  a  class  of  nanomaterials  that  are  being broadly
used in the therapeutic and environmental applications
(Beheshtkhoo et al., 2018), while silver is a transition,
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lustrous, and white element in the periodic table, that
has  been  extensively  known  for  therapeutically,
environmental, and medical benefits [16]. Medically,
silver has been using for over 2000 years and silver-
based compounds have been used as antibacterial since
the 19th century [17]. The uniqueness of AgNPs is that
it has been explored in different areas of human life
e.g. washing machines, food, medicine, and fabrics on
a large scale (McGillicuddy et al., 2017).

Nanotechnology is one of the most progressive field in
many  industrial  areas  at  the  atomic  and  molecular
levels.  The  resulting  materials  have  probably  novel
characteristics regarding their function with small size.
[20].  Nanoscience  is  being  developed  as  a
multidisciplinary field based on the key properties of
Nano-size  materials  [21].  NPs  recollect  amazing
marantic, optical, catalytic, biological, and electronic
properties,  and these properties are because of their
higher surface area to the volume ratio [22]. There are
certain  kinds  of  nanoparticles  but  the  AgNPs  have
gained  more  attention  due  to  of  their  chemical,
biological  and physical  properties  [23].  The size of
chemical synthesized AgNPs was 10-100 nm, which
defines its  good activity to remove certain kinds of
micro-fauna  [24].  For  these  biological  activities,
nanomaterials can be existed as nanotubes, nanorods,
dendrimers, fullerenes, nanowires, quantum dots, and
nanoparticles [25].

1.1 Silver Nanoparticles

 

            The present era has witnessed momentous
headway in the vivid domain of nanotechnology. It is
because  of  this  revolutionizing  Nano-dimensional
arena  that  several  unmet  challenges  have  been
comprehensively dealt with [26]. AgNPs have unique
optical  properties  resulting  from  the  collective
oscillations of free electrons in response to incident
light [27]. Silver illustrates the potential problem of
environmental  contamination  by  anthropogenic
nanoparticles. It is a naturally occurring rare metal that
is 63rd in the order of abundance of chemical elements
in Earth’s crust [28]. AgNPs are unique because it has
been used for centuries due to their best antimicrobial
activity with subjective evidence of the use of colloidal
silver in the ancient Rome and Egypt [29]. Though,
AgNPs  are  principally  known for  the  antimicrobial
activity,  only  10%  are  fabricated  for  antimicrobial
influences  while  other  applications  have  included
optics,  electronics,  catalysts,  and  bio  sensing  [30].
Different  types  of  silver  nanoparticles  in  size  and
shape are  being fabricated.  Many have a  core-shell

structure comprising a metallic silver core of varying
size  and  shape  and  a  coating  that  usually  helps  to
control  the size of the AgNPs during synthesis and
provides a surface charge to stabilize the AgNPs in
solution [31].  At  the beginning of  the 20th  century,
wounds  and  infections  were  mostly  treated  with
colloidal  silver  (including  AgNPs),  but  the
development/discovery  of  modern  antibiotics  in  the
1940s  greatly  reduced  this  practice  [29].  With  the
increasing resistance of bacteria to antibiotics, Ag has
again  become  popular  in  the  medical  field  as  a
disinfectant [28].

Table 1. The use of silver nanoparticles in different
fields of life

Source Use Output Reference

Amino terminated hyper branched
polymer

Cotton fabric Best antibacterial activity [32]

Green synthesis Dental cement Best result and performance [33]
Plant induced Target drug delivery Promising application in drug

delivery
[34]

Green synthesized Purification of drinking water Promising results [35]
Green synthesized Small ruminant disease AgNPs be an alternative source for

small ruminant disease e.g., wound
healing effects

[36]

Green synthesized AgNPs Used against certain types of
bacteria and fungi isolated from
archaeological manuscripts

Excellent inhibitory growth of
bacterial and fungal species

[37]

1.2 Applications of silver nanoparticles

 

Nanotechnology is a multidisciplinary scientific field
that  has  drawn  worldwide  attention  from  various
researchers in science and industry. Nanotechnology
offers  the  faci le  synthesis  of  metal-based
biocompatible nanomaterials that can be applied to a
wide range of potential  applications in medical  and
biological  sciences,  including  medical  diagnosis,
medicine,  bio  sensing,  health  care,  drug  delivery,
coating,  medical  devices,  wound  healing,  the  food
industry,  cosmetics  and  environmental  remediation
(water purification). Fig. 1 shows the applications of
AgNPs.

AgNPs are very small particles that have been playing
a vital role in the applied sciences. The application of
silver nanomaterials is very diverse because of their
unique properties. The AgNPs can be applied from the
micro  level  to  the  macro  level.  The  biosynthesized
nanoparticles  have  been  used  in  a  variety  of
applications  including  drug  carriers  for  targeted
delivery,  cancer  treatment,  gene  therapy,  and  DNA
analysis,  antibacterial  agents,  biosensors,  enhancing
reaction  rates,  separation  science,  and  magnetic
resonance  imaging  (MRI).

Figure 1. A short presentation of the application of
AgNPs in different fields, AgNPs is a noble material
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that can be applied in many fields of science and
daily life [38].

1.2.1 Wastewater treatment

 

            Contamination of  drinking water  is  a
worldwide concern as it causes irreversible damage to
plants, humans, and animals. It also spreads numerous
epidemics  and  chronic  diseases  [39].  Wastewater
contains  a  high concentration of  metals,  herbicides,
pesticides,  and  toxic  industrial  effluents  that  can
disrupt various biochemical processes in animals and
human  beings  and  lead  to  change  in  enzymatic
activities/pathways which could cause various diseases
and even genetic disorders.

Over  a  billion  people  having  a  lack  of  access  to
drinking pure and clean water. Many death ratios have
been noticed due to waterborne disease [40]. For these
issues, silver nanomaterials has potential applications
in  purification  of  wastewater  treatment  [41].  A
laboratory-scale study concluded that 1 mg AgNPs in
1 L water  could inhibit  the growth of  microbes by
80%   [42].  Due  to  their  specific  properties,  the
wastewater can be reduced [43].

1.2.2 Disease treatment

 

          The research community is in the continuous
search of  novel  opportunities  for  improving disease
diagnosis,  drug design,  and drug delivery therefore,
Nano biotechnology is an important field with many
novel  applications [44].  Since ancient  times,  metals
and especially silver were known for their antibacterial
effects, but these days available methodologies allow
the  further  exploitation  of  metal  in  the  form  of
nanoscale  materials.  The  antiphrastic  approach  of
AgNPs is given in Table 2.

Table 2.  The antiparasitic approach of biological
and chemical fabricated AgNPs

Parasite/ Species Metal NP size Synthesis Reference
Plasmodium falciparum AgNPs 22-44 nm Triangular shape Biological [45]
Leishmania tropica AgNPs 90 nm spherical shape Chemical [46]
Leishmania donovani 12.82 nm spherical shape Biological [46]
Trypanosoma brucei 9 nm spherical shape Chemical [47]
T. brucei 17 nm spherical shape Biological [48]
Schistosoma mansoni AgNPs 10-15 nm spherical shape Chemical [49]

 

AgNPs are  a  very important  inhibitory material  for
different diseases even known as a good antimicrobial
agent against pathogenic bacterial species [50]. Silver
nanoparticles  can  react  with  the  thiol  group  of

proteins,  which  leads  to  the  inactivation  of  the
bac te r ia l  ce l l .  I t  a l so  can  s top  oxida t ive
phosphorylation  and  DNA  replication  [51].  The
inhibitory  process  takes  place  by  DNA replication,
reactive  oxygen  species,  and  direct  damage  of  the
microbial cell [52]. A researcher [29] has revealed that
the nanoparticles first stick to the cell wall, secondly,
the nanoparticles penetrate the parasite cell, and third
it starts DNA damage by damaging the thiol group of
protein [50]. For this reason, AgNPs are being used to
treat a wide range of diseases, for instance, malaria
[53].

A new era of antimalarial approach is being emerged
by using nanoparticles alone or in combination with
commonly  used  drugs  and  maybe  an  innovative
therapeutic  approach  for  malaria  treatment  [54].  A
study was conducted for the biological  synthesis  of
AgNPs and applied for  the anti-plasmodial  activity.
The  results  were  highly  encouraging  since  growth
inhibition was obtained with LC50 values of 3.75 μg/ml
(amylase  product  AgNPs)  and  8  μg/ml  (Ashoka
produced  AgNPs),and  30  μg/ml  (Neem  produced
AgNPs), whereas plant extract or amylase alone did
not show any activity even up to 40 μg/ml [45].

The mechanism of antiphrastic  metal  AgNPs is  not
well  known,  but  catalytic  oxidation,  binding  to
parasite’s proteins and cellular constituents,  and ion
release are  the  principal  proposed modes of  action.
Photocatalytic production of ROS damages parasitic
components  and  disturbs  the  energy  transduction
pathway in the parasite that causes diseases in animals
and household cattle [55].

1.2.3 Animal husbandry

 

The health of animals, especially household cattle and
small  ruminants  play  a  significant  role  in  food
consumption  and  economic  growth  in  developing
countries.  Fungal  and  bacterial  infection  in  animal
husbandry is a global concern. Bacterial  and fungal
species  secret  many chemicals  that  contaminate  the
environment,  and  this  contamination  continues  to
animal feed. Feed contamination causes major diseases
in animals and poultry (Atef et al., 2017). Therefore,
nanotechnology  has  the  potential  to  solve  many
mysteries  related  to  animal  health  [57].  In  African
countries, rabbit industries are at their peak regarding
their  production,  housing  management,  economic
growth,  and  nutrition  [58].  For  this  concern,
nanotechnology is being used, and nanomaterials are
being given as a food supplement in the diet instead of
salt and other minerals. These nanoparticles have been
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found  with  many  novel  properties,  for  instance,
growth,  maintaining  health,  and  disease  [59].  The
more details of diagnostic and therapeutic properties of
AgNPs are shown in Table 3.

Table  3.  The  table  represents  some examples  of
benef i ts  achieved  by  the  appl icat ion  of
nanotechnology in animal husbandry [38]

Diagnostic purposes
of nanoparticles

1. The coupling of nanoparticles specific to the tumor antibodies with better survival rates and scanning the whole body
for metastatic lesions.
2. Nano-biotics can be used in surgeries and nano-cameras can be carried for real-time assistant.
3. Nanoparticles can provide rapid diagnostic tools for example nano-chips enable us to detect thousands of proteins,
antigens, genes, or disease biomarkers simultaneously.

Therapeutic purposes
of nanoparticles

1. High surface area to volume ratio, enable loading of high amounts of payloads.
2. The nanoparticles are very small, therefore, due to their small size, they can easily different kinds of barriers for
instance blood-brain barrier.
3. Nanoparticles can treat multi antibiotics resistance pathogenic species, for instance, brucella, toxoplasma, and
leishmania infections, and even chronic non-infectious diseases in animals.
4. New generations therapeutic nanoparticles are highly specific for different targets, AgNPs are developed to treat the
genotype and phenotype of cancer cells.
5. An open new horizon for tissue engineering and grafting provides concepts for gene therapy, delivery of DNA, RNA,
proteins, and peptides inside the animal cells.

 

Concerning  their  medicinal  value,  the  nanoparticles
are being used as a source of drug delivery in animal
husbandry [60]. Foodborne disease in animals is one
of  the  important  among  all  animal  diseases.
Nanomaterials are widely used in animal feed to treat
the  disease  due  to  their  physicochemical  properties
[61].  Fungal  species  play  an  essential  role  in  the
contamination of animal feed. Many mycotoxins have
been  identified  that  contaminate  the  animal  feed.
AgNPs  are  a  promising  tactic  to  inhibit  this
contamination  [62].  A  study  conducted  by  [63]
regarding  the  nanoparticles  and  their  use  in  broiler
feed.  Nanoparticles  were  supplemented  in  the  feed.
The  results  have  concluded  that  the  dose  of  the
nanoparticle  supplementation  improved  the  dietary
product with no toxicity. Some studies have revealed
their results and concluded that nanomaterials could
improve  reproduction  in  poultry,  livestock,  and
fisheries  [64].

1.2.4 Fish and fisheries

 

            As an important agricultural commodity, fish
adds  value  to  rural  incomes,  creating  employment,
generating revenue, and ensuring global food security.
Fishery creates productive financial gain compared to
any farming activity in aquaculture, even only through
capture  and collection.  This  sector  is  also prone to
multiple  challenges  including  overexploitation,
pollution,  climate  change,  and  diseases  resulting  in
retarded  growth,  and  substantial  financial  loss.  In
aquaculture  production,  different  diseases  have
developed into one of the major limiting factors [65].
Among the  causative  agents,  the  Pseudomonas  and
Aeromonas sp.  are one of the important fish pathogens
[66].

            Among a large number of aquatic pathogens,
the gram-negative “Aeromonas hydrophila” has been
recovered from a wide variety of freshwater fishes and
possesses  the  ability  to  grow  in  both  aerobic  and
anaerobic conditions [67, 68]. It propels the outbreak
of  various  fish  diseases  like  ulcers,  fin-rot,  tail-rot,
hemorrhagic  septicemia,  etc.  [69].  Their  infection
enhances  environmental  pollution,  the  elevation  of
water temperature, and the addition of stressors in the
aquatic medium [67].  Antimicrobials like antibiotics
are generally used to prevent these diseases. However,
a study on A. hydrophila from various fish tissues have
revealed that the pathogen had developed resistance to
many  antibiotics  like  amoxicillin,  ampicillin,
lincomycin,  novobiocin,  oxacillin,  penicillin,
rifampicin and tetracycline [70], and thus researchers
have  attempted  to  find  the  alternative  of  these
antibiotics [71]. A study conducted by [67] regarding
the application of AgNPs against fish causing disease
bacterial strains. In this context, the inhibitory function
of biological synthesized AgNPs against A. hydrophila
was  evaluated  in  comparison  with  antibiotics.  The
study concluded that the bio-synthesized AgNPs can
be  used  as  an  alternative  source  for  antibiotics
against  A. hydrophila  stimulated diseases in aquatic
animals. Similar like another study was conducted by
Fatima  et  al.,  (2020).  In  this  study,  the  biological
synthesized  AgNPs  were  applied  for  antibacterial
e f fec t  aga ins t  the  f i sh  pa thogens  Vibr io
harveyii ,  Vibrio  parahaemolyticus ,  Vibrio
alginolyticus,  and  Vibrio  anguillarum.  The  result
revealed that the highest activity was found against the
p a t h o g e n s  V i b r i o  h a r v e y i i  a n d  V i b r i o
parahaemolyticus.  Herein,  the  above  studies  have
concluded that biological synthesized AgNPs might be
an alternative source instead of available antibiotics
and could be a promising antibacterial and antifungal
agent in the fisheries.

1.2.5 Antibacterial and antifungal

 

            Bacterial resistance is a global health concern
and research on novel therapeutic agents with wide-
spectrum  antibacterial  activity  is  very  important.
Several antibacterial agents are already available in the
market, controlling bacterial and fungal contamination.
However, these antibacterial agents can have several
drawbacks, such as toxicity, high cost, low solubility,
and  side  effects.  Therefore,  conducting  studies  on
effective and secure anti-bacterial components is very
important and of high interest.

It has been widely discussed that AgNPs have the best
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antimicrobial effect with the lowest Eco toxicity in the
environment  [73].  Comparatively  the  antimicrobial
effect of AgNPs is different against Gram-positive and
Gram-negative  bacterial  species  [74].  It  has  been
reported by Rafique et al., (2019) that Gram-positive
bacteria are less sensitive to AgNPs as compared to
Gram-negative  bacteria.  For  instance,  the  results  of
bio-synthesized  AgNPs  showed  that  Staphylococcus
aureus exhibit  higher activity than Escherichia coli.
Another  study  conducted  by  AlSalhi  et  al.,  (2016)
evaluated  the  antibacterial  activity  of  AgNPs
synthesized using aqueous plant extracts of Pimpinella
anisum  seeds,  against  several  bacterial  isolates
including  Klebsiella  pneumoniae,  Acinetobacter
baumannii,  Streptococcus  pyogenes,  Pseudomonas
aeruginosa, and Salmonella typhi. They also assessed
the toxic influence of AgNPs on HT115 and hSSC
cells using in vitro growth and proliferation assays and
cell  viabil i ty  tests .  AgNPs  produced  by  P.
anisum exhibited exceptional antibacterial activity on
various microorganisms and demonstrated cytotoxicity
on HT115 s and hSSCs.          

            There is a growing interest in the identification
of  new  and  novel  antimicrobial  agents  due  to  the
increase of the antimicrobial resistance globally threat
to  the  public  [77].  AgNPs  is  the  best  example  of
antimicrobial agents as the detrimental effects of silver
on microbial cells can be increased by the production
of  smaller  nanomaterials  [78].  Jebril  et  al.,  (2020)
reported  that  plant-induced  AgNPs  are  the  most
promising antimicrobial sources against certain kinds
of  fungal  isolates.  The  results  of  plant-mediated
AgNPs  revealed  that  the  presence  of  AgNPs  in  a
concentration of 60 ppm significantly decreased the
growth of Verticillium dahalia. Guerra et al., (2020)
reported that 55-60% of broth fungal cell growth was
decreased after  the application of  AgNPs [80].  The
AgNPs are a good antimicrobial agent and this activity
involved certain mechanisms [81].

1 . 3  M e c h a n i s m  a c t i o n  o f  s i l v e r
nanoparticles

 

Silver nanoparticles are widely used in our daily life,
but their mechanism of action is not fully understood
[82].  The  mechanism action  of  AgNPs  has  always
been a debatable topic and the exact mechanism is not
clear yet,  but there are some theories on the action
mechanism of AgNPs on microorganisms.

Silver  nanomaterials  enter  the  bacterial  cell  wall,

afterward breach it and finally cause changes in the
cell  membrane,  which  leads  to  bacterial  cell  death
[81]. The AgNPs create small pores on the cell surface
and  the  cell  becomes  porous,  therefore  the
accumulation of AgNPs occurs on the surface of the
cell [83]. A free radical formation might be considered
another mechanism of action when AgNPs formed a
cluster of radicals inside the bacterial cell, which also
leads to cell death [81]. A conducted study by using
electron  spin  resonance  spectroscopy  showed  that
there is a cluster formation of radicals of AgNPs when
in contact with bacterial cells, these free radicals can
destruct the bacterial cells and make them permeable,
hence, the cells automatically died [84].

Figure  2.  A  different  mechanism  of  cytotoxicity
effects  of  AgNPs.  1:  AgNPs  adhere  to  the  cell
membrane  that  alters  the  membrane  structure
which  leads  to  leakage  of  cellular  contents.  2:
AgNPs penetrate inside the cell and destabilize the
DNA. 3: ROS generation leads to oxidizing proteins
and lipids and makes the ribosome destabilize. 4:
AgNPs cause genotoxicity that damages the DNA
base which leads to inhibition of  replication and
transcription [85].

 

Another  mechanism has  proposed that  the  bacterial
enzymes are inactivated probably due to ion formation
by AgNPs. Furthermore, inside the bacterial cell, these
ions  interact  with  the  thiol  group  of  enzymes  and
inactivate  them  [86,  87].  AgNPs  are  a  soft  acid,
consequently, there is a natural phenomenon that the
acid always reacts with the base [88]. The bacterial
cell  is  mostly  made up of  phosphorous  and sulfur,
which are soft bases. Now the silver present in AgNPs
is  a  soft  acid.  The  reaction  between  silver  ions,
phosphorous, and sulfur leads to bacterial cell death.
Another statistic is that bacterial cell contains DNA,
and DNA is itself consist of phosphorous and sulfur.
Silver, as soft acid, reacts with these soft bases, which
leads to the destruction of the bacterial cell [89]. This
mechanism of action was further supported by another
study. When Staphylococcus aureus was exposed to
AgNPs and studied by combined X-ray microanalysis
and electron microscopy. Their results have revealed
that the cell wall was detached from the cytoplasm. A
condensed DNA molecule was found alone. Silver and
sulfur were found by visualizing X-ray microanalysis.
The DNA lost its ability to be replicated. All these
were found after the treating of bacterial  cells  with
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AgNPs [86]. Due to the revealed mechanisms, silver
nanopart icles  are  among  the  most  s tudied
nanomaterials are the most applicable nanomaterials
for example; antimicrobial activities, animal feed, fish
diseases, and provide many benefits but little is known
about their toxicity [90]. Therefore, it is very important
to measure the toxicity caused by AgNPs.

1.4 Toxicity of silver nanoparticles in a biological
system

 

The toxicity of AgNPs has been reported in different
studies due to their shape, size, and surface capping
[91]. The long exposure time of AgNPs increases the
toxicity level  [92].  One of  the previous studies has
revealed  that  the  BEAS-2B  cells  were  exposed  to
AgNPs in  different  size  (10-40 nm) the  toxicity  of
AgNPs were investigated by photon cross-correlation
spectroscopy  which  has  revealed  the  DNA damage
[93]. The harmful and dangerous properties of AgNPs
on the environment and their contact with biotic and
abiotic factors have been raising concerns in the last
decade  [94],  because  these  NPs  are  continuously
released into terrestrial and aquatic environments [95].
The  cytotoxic  effects  of  AgNPs  have  mostly  been
characterized  in  turns  of  oxidative  stress,  DNA
damage, and modulation of cytokine production. The
cell uptake of AgNPs can stimulate the production of
ROS,  resulting  in  oxidative  stress  and  genotoxic
effects ROS are produced owing to a disruption in the
flux  of  ions  and  electron  across  the  mitochondrial
membrane;  if  produced  in  sufficient  high  amounts,
ROS can inductive cell death by either apoptosis or
necrosis in human [96]. Studies have shown AgNPs
toxicity  to  be  both  size  and  shape  dependent;  for
example,  one  study  with  alveolar  macrophages
indicated that AgNPs with a mean size 15 nm induced
the  greatest  loss  in  mitochondrial  activity  [97].
However, contradictory data exists on the influence of
AgNPs  size  and  mitochondrial  toxicity  [98],
suggesting that such effects could be bioaccumulation
and histological alteration [99]

Figure  .3.  The  toxicological  effects  of  silver
nanoparticles in the biotic and abiotic systems.

Nanoparticles  can  enter  the  environment  by  human
activities  and can be  transferred  from one place  to
another  place  with  the  help  of  water,  air,  and  soil
[100]. This transformation process of AgNPs might be
accumulated in plants and can lead to AgNPs toxicity

in plants [101], and fish gut bacterial dysbiosis [102].

Table  4.  The  toxicity  of  silver  nanoparticles  in  a
different biological system

Size (nm) Model Results Reference:
13-15 Rat Mucous production increased [103]
60 Rat Alteration in lungs, lesions formed [104]
60 Rat liver cells Bioaccumulation [105]
15 Mouse germ cells ROS, cytotoxicity [98]

[106]
15 Stem cells and germ cells Cell death [107]
15 Mouse embryonic cells Apoptosis [108]
20 Rat Epididymal sperm cells decreased [109]
45-59 Cyprinus carpio Disturbed gut bacteria [110]
10 Cyprinus carpio Bioaccumulated in different organs [111]
28 HeLa and HaCaT Oxidative stress [112]
10 Human epithelial Disruption in signaling  
15 HepG2 cells cytotoxicity  
15 Leaves Inhibited growth, color change

from green to yellow
[113]

15 Arabidopsis thaliana Inhibit root elongation [114]

 

1.4.1 The importance of AgNPs toxicity in fish

 

            The exposure  of  nanoparticles  in  the
environment has adverse effects on living organisms
and  public  concern.  The  size,  shape,  morphology,
composition, and distribution of nanoparticles are the
leading cause of toxicity [115]. Not only the nature of
nanoparticles, but their toxicity also depends on the
opponent species and nature of species [116]. AgNPs
cause toxicity in the environments by releasing silver
species (Ag+) [50] by promoting membrane damage,
ROS generation,  protein oxidation and denaturation,
DNA damage, and cell denaturation and in terrestrial
and aquatic organisms [117].

            Widespread use of AgNPs has certainly led to
their  release  and  presence  in  natural  aquatic
environments [118]. Additionally, AgNPs have been
used  in  wastewater  treatment  and  bioremediation
[119].  In  the aquatic  ecosystem, the main exposure
route is  by ingestion or  contact,  due to  sorption to
phytoplankton or zooplankton, transfer from water to
sediment, and uptake in benthic organisms, which can
be then directly ingested by large vertebrates such as
fish [120]. For this purpose, most of the experiments
are conducted by using zebrafish and common carp
fish. These two fish species are used as experimental
animal  models  [121].  Many  studies  have  been
conducted using C. carpio regarding AgNPs toxicity.
Recently  a  study  has  revealed  that  the  AgNPs  are
mostly  accumulated  in  the  liver,  followed  by  the
intestine, muscles, and gills [122]. Another study has
revealed that the AgNPs stay for a long time in fish
body  [123].  The  C.  carpio  matters  and  have  an
importance impact in human nutrition and global food
supply [124]. Thus, consumption of fish by the human
can lead to the shifting of nanoparticles from fish to
human [125]. Therefore, measurement of the toxicity
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and  accumulation  of  nanoparticles  in  fish  is  very
important  [126].  Experimentally,  AgNPs  have  been
detected in different organs, for instance, lungs, brain,
spleen, kidney, and liver. Another study reported that
the nanoparticles are mostly bio accumulated in human
pancreatic cells [127] and lymphatic tissue [128]. This
accumulation causes severe destruction in human cells,
for instance, ingested nanoparticles pass through the
gastrointestinal  tract  which  leads  to  damage  of  the
digestive  gland  cell  membrane  via  oxidative  stress
[129].  Hence,  the  above  studies  proved  that  the
measurement  of  toxicity  in  fish  is  very  important.
Moreover, the AgNPs show more toxicity in terms of
cell  viability, generation of reactive oxygen species,
and lactate dehydrogenase leakage [98]. Therefore, it
is  a  very  important  aspect  to  check  the  toxicity,
genotoxicity,  and  bioaccumulation  of  AgNPs  in  C.
carpio.

1.5 Synthesis of Nanoparticles

 

The  synthesis  of  nanomaterials  takes  place  by  two
main  methods  called  as  1:  Top-down  approach,  2:
Bottom-up  approach.  The  top-down  approach  is  a
method  in  which  a  large  piece  changes  into  small
desired  nanomaterials.  This  method  of  synthesis
includes  etching,  grinding,  and  cutting  of  materials
into small particles. This method can fabricate small
particles  ranging  between  10-100  nm  [130].  The
bottom-up approach is when the molecular precursors
are decomposed and make metal atoms that grow into
monodispersed colloids. This concept for the synthesis
of nanomaterials is said to be a bottom-up approach
[130]. Both approaches are shown in Fig. 4.

Figure  4.  A  modified  figure  of  the  top-down
approach versus the bottom-up approaches [130].

The synthesis of AgNPs can take place easily by using
a bottom-up approach.  This is  a good approach for
fabrication  because  this  approach  provides  an
opportunity to fabricate AgNPs in the small range of
10-100  nm  [131].  The  second  advantage  of  the
bottom-up  approach  is  that  synthesized  Ag
nanomaterials are stable and formed in a crystalline
structure [132]. The bottom-up approach includes the
biologically  fabrication  of  nanoparticles  while  the
Top-down approach includes chemically synthesis of
AgNPs [133].

1.5.1 Chemical synthesis of silver nanoparticles

 

Generally, certain steps are required in the chemical
fabrication of AgNPs i.e., metal atoms formation by
reduction process. These metal atoms then passed from
an elementary nucleation process. Finally, leads to the
formation of the nanoparticles (Murray et al., 2000).
The nucleation process is important because saturated
or  supersa tura ted  so lu t ions  a re  uns table
thermodynamically.  For  the  occurrence  of  the
nucleation  process,  a  supersaturating  solution  “sol
gel”  is  must to generate quite small size particles or
materials (Burda et al., 2005). After the formation of
nuclei for the supersaturated solution, they grow up
through soluble species over the solid surface. When
the  concentration  falls  down  the  critical  level,  the
nucleation process stops, but continuously the particles
growing up  until  the  balance  of  species  is  reached
[137].  Chemically nanomaterials  can be synthesized
by  various  methods  such  as  micro-emulsion  [138],
polyol  reduction  [139],  and  thermal  decomposing
method [140]. The monodisperse colloid growth and
typical synthetic apparatus are given in Fig. 5. Due to
the  high  toxicity,  the  preference  is  given  to  the
biological synthesis of AgNPs instead of the chemical
approach [141].

Figure  5.  The  modified  conceptual  figure  of
synthesis  of  nanoparticles  via  chemical  method
(Khan et al., 2018 b).

1.5.2 Synthesis of silver nanoparticles using biological sources

 

Biological entities and inorganic materials have been
in  constant  touch  with  each  other  ever  since  the
inception  of  life  on  the  earth.  Due  to  this  regular
interaction,  life  could  sustain  on this  planet  with  a
well-organized deposit of minerals. Recently scientists
have  become  more  and  more  interested  in  the
interaction  between  inorganic  molecules  and
biological  species.  Studies  have  found  that  many
microorganisms can produce inorganic nanoparticles
through either intracellular or extracellular routes. This
section describes the production of silver nanoparticles
via biological methods.

1.5.2.1 Synthesis of silver nanoparticles by Plant
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The biological synthesis of the nanoparticle is called
green synthesis, and if the synthesis of nanoparticles
takes place by employing any plant species is called
Phyto-synthesized  nanoparticles  [143].  Plants  are
known  to  be  a  factory  of  bioactive  compounds.
Flavonoids, terpenoids, and phenols are mostly present
in  many  plant  species  [144].  These  biological
compounds play a vital role in the synthesis of AgNPs
by a bio-reduction process [145]. The interest in the
phyto-nanotechnology was very enhanced in the last
decade [146]. The photo—Nano synthesis technique is
important for the control size and well-defined shape
[145], as shown in Fig. 6. Biosynthesis of AgNPs by
plant  species  has  substituted the  chemical  synthesis
method  [147].  Because  plant  fabrication  for  nano-
silver is more beneficial and less toxic than chemical
synthesis [148]. Several studies have been reported for
the  fabrication  of  nano-silver  [149].  An  aqueous
extract of Ficus hispida was used by [150] to fabricate
AgNPs. A well  dispersed and small  size of AgNPs
were fabricated. Another study was conducted for the
syn thes i s  o f  AgNPs  us ing  p l an t  spec ie s
Saccharopolyspora spinosa. The majority of spherical
and small  size  AgNPs were  confirmed via  FESEM
[151].

Figure  6.  Plant-induced  synthesis  of  silver
nanoparticles. Any part of the plant can be used to
synthesize  the  silver  nanoparticles.  Herein  a
complete  process  is  given.

The word Phyto-fabrication designates to synthesize
the nanomaterials with the help of plant species. Plants
are known to be the factory of enzymes and biological
compounds such as reductase and flavonoids. These
are involved in the synthesis of nanoparticles. [152].
Plants  extract  contained  different  biological
compounds  and  these  compounds  act  as  capping
agents  [153].  Plants  are  favorable  sources  for  the
synthesis of AgNPs because they can easily be handled
as plants are not toxic as compared to other biological
resources. Many plants have been used to synthesize
the  nanomaterials  and  many  are  being  under
investigation to use for the synthesize of NPs [154].
Some  plants  are  known  to  synthesize  a  higher
concentration  of  nanomaterials,  such  as  Brassica
juncea  [155].  Year-wise  different  researchers  have
conducted studies for the fabrication of nanoparticles
given in Table 5. The biological synthesis is not only
done by plants, but the microorganisms also take part
in the biological synthesis of AgNPs.

Table 5. Different literature studies were conducted
by different researchers regarding plant synthesis
of nanoparticles.

Species Part of plant Type of NP Size in nm Reference
Capsicum annuum Leaves Ag 15-20 nm [156]
     
Gliricidia sepium Leaves Ag 10-50 nm [157]
     
Alfaalfa Seeds Ag 2-4 nm [154]
Pelargonium graveolens
 

Leaf Ag 25-40 nm [158]

Azadirachta indica Leaf Ag 5-35 nm [159]
Emblica officinalis Fruit Ag 15-25 nm [160]
Aloe vera Leaves (Gel) Ag 15.15.6 nm [161]
Capsicum annuum Leaves Ag 20-30 nm [156]

             

1.5.2.2 Microbial Synthesis of silver nanoparticles

 

As discussed above the biological fabrication of silver
nanoparticle using plants, however microorganisms are
also an important biological source for the fabrication
of AgNPs.  As we know, microorganisms are easily
available  everywhere.  Especially  environmental
microorganisms  are  available  easily  and  these
microorganisms  are  not  much  toxic  to  humans.
Therefore, these kinds of microorganisms might easily
be used to synthesize AgNPs. The conducted literature
is given in Table 6. A variety of literature is available
for the synthesis of AgNPs using microbial species.
The synthesis of AgNPs by microbial strains is a very
simple, less costly, and friendly to environment [162].
Nanoparticles  are  biosynthesized  when  the
microorganisms  grab  target  ions  from  their
environment and then turn the metal ions into element
metal through enzymes generated by the cell activities
[163]. The microorganism synthesis AgNPs into the
cell  is  intracellular  and  when  microorganisms
synthesized  AgNPs  on  the  surface  of  the  cell  is
extracellular synthesis [164]. Nanoscale silver is Nano
sized particles with a high surface area to volume ratio
[165]. Using microorganisms such as fungi, archaea,
bacteria,  etc.,  can  easily  reduce  the  silver  salt  into
AgNPs  and  these  are  low-priced  techniques  and
friendly  to  environments  [166],  as  given  in  Fig  8.
Bacillus is a common bacterial strain that are capable
of  synthesizing  AgNPs  easily  [167].  Pseudomonas
stutzeri is another bacterial species found to be capable
of  the  synthesis  of  AgNPs  intracellularly  [168].
Bacterial  species  Staphylococcus  aureus,  Klebsiella
pneumonia,  and  E.  coli.  Were  used  by  (Ali  et  al.,
2018) for the synthesis of AgNPs. 

Table 6. A previously conducted literature studies
about the role of bacterial and fungal species in the
fabrication of silver nanoparticles
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Bacterial species Source Reference
Pantoea ananatis Soil [169]
Agrococcus Sp. Soil [170]
Bacillus sp. Heavy metals [171]
Pseudomonas stutzeri Soil [168]
E. coli Soil [172]
Bacillus siamensis Medicinal plant [173]
Staphylococcus aureus Soil (Ali et al., 2018)
Klebsiella pneumonia Soil (Ali et al., 2018)
Sphingobium sp. MAH-11 Soil [174]
Fusarium. oxysporum Soil [175]
Penicillium verucosum Soil [176]
Pleurotus florida Soil [177]
White rot fungi Soil [178]
Beauveria bassiana Water [179]

 

Fungi  is  a  type  of  microorganism that  is  generally
found everywhere in the world. Macro fungi are used
as  food,  and  micro-fungi  are  used  in  the  field  of
medicine [180]. Besides that, the fungi also play a vital
role in the synthesis of AgNPs, because they offer high
tolerance to metals and are easy to handle [181]. Many
studies  have  confirmed  and  concluded  that  fungi
synthesize  AgNPs  by  producing  extracellular
secondary  metabolites,  and  the  metabolites  reduce
Silver  nitrate  into  AgNPs  [182].  Biosynthesis  of
AgNPs  by  fungal  species  enhances  the  stability  of
AgNPs, reduces toxicity, and best capping agent [183].
Due to high affinity towards the metals, fungi are more
effective in the synthesis of AgNPs as compared to
other biological species [21], then fungi produce more
protein  content  as  compared  to  bacteria;  therefore,
fungal  species  can  fabricate  nanomaterials  in  bulk
[182].  A study concluded  that  a  fungal  species,  F.
oxysporum  having  biological  power,  includes
extracellular enzymes. These enzymes are an excellent
source of reducing agents, and this property is a very
important factor for the biological synthesis of AgNPs
[184].  Extracellular  synthesis  of  nanomaterials  has
been  reported  by  [185],  in  which  the  AgNPs were
synthesized by Pestalotia sp. Different fungal species
can  be  used  and  can  be  easily  available  for  the
synthesis  of  AgNPs such as  Fusarium,  Penicillium,
Aspergillus, Pleurotus, and some other species [182].
Ingle et al., (2008) has used F. acuminatum broth to
synthesize  AgNPs.  This  study  concluded  that  F.
acuminatum can synthesize AgNPs easily and rapidly.
Ahmad et al., (2003) reported that F. acuminatum was
treated  with  AgNO3  solution.  Rapid  synthesis  took
place,  in  which  5-15  nm  small-sized  AgNPs  were
obtained.  Another  researcher,  [188]  reported  the
synthesis of AgNPs by using Penicillium sp. isolated
from the soil. [189] reported the biological synthesis of
AgNPs by using Aspergillus niger isolated from the
soil. The use of plants, bacteria, and fungi is the great
achievement in synthetic biology but, there are some
disadvantages  such  as  the  use  of  toxic  chemicals,
fungal contamination, and generation of waste which
cause environmental pollution [181]. Therefore, it is
very important to find a new biological direction for

the fabrication of AgNPs.

Figure  7 .  Microbia l  synthes is  of  s i lver
nanoparticles.  Bacteria,  fungi,  algae  and
cyanobacteria  can  be  used  to  synthesize  silver
nanoparticles.

1.7 Animal blood serum

 

            Slaughterhouse blood is an inevitable part of
the waste product which represents a rich in protein.
The physicochemical characteristics and utilization of
animal  blood in  many industries  and applied  fields
have been well explored. Animal blood is a red fluid,
which mainly consists of cells and plasma. Cells are
further consisting of red blood cells, white blood cells,
and platelets. Plasma or serum is made up of water,
organic  substance,  inorganic  substance,  and  many
biological molecules i.e., proteins and enzymes.

            Plasma or serum, the part of the blood
remaining after removal of the cells from un-clotted
blood contains 6 to 8% proteins, consisting primarily
of  albumin,  globulin,  and  fibrinogen  as  shown  in.
These as well as more than 100 smaller proteins have
been well characterized. Animal blood has been used
in  many  industrial  applications  such  as  pet  food,
animal  feed,  aquatic  feed,  laboratory,  medical
microbiology,   and  research  [190].  Therefore,  a
previous study used animal blood serum for biological
synthesis of AgNPs and obtained a well dispersed and
under size AgNPs [191]

1.8 Conclusion

 

Silver  nanoparticles  have  gained  significant  interest
because of their valuable properties and their proven
applicability  in  diverse  fields  such  as  medicine,
biotechnology,  nanotechnology,  bio-engineering
science,  water  treatment,  textile  engineering  and
catalysis. These NPs can be used as antimicrobial and
antifungal  agents  in  a  diverse  range  of  products
because  of  their  significant  antimicrobial  and
antifungal  activities.

The flexibility in the methods of synthesis and assured
incorporation silver nanoparticles into different media
have inspired the  researchers  to  further  explore  the
mechanism behind their antimicrobial, antiviral anti-
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inflammatory  effects.  The  shape,  size  and  size
distribution of silver nanoparticles can be controlled
by  adjusting  the  reaction  condition,  such  as  the
reducing agent, stabilizer or by employing the various
synthetic methods. Hence, it is crucial to understand
the impact of reaction conditions on the morphology
and size of these NPs.

Several  techniques have been developed to produce
silver  nanoparticles  with  different  shapes  and sizes,
such  as  laser  ablation,  electron  radiation,  gamma
radiation, chemical reduction, microwave processing,
photochemical methods and thermal decomposition of
silver oxalates in water and in ethylene glycol, as well
as biological synthetic methods.

Chemical and physical methods have been used for
synthesizing silver nanoparticles for several decades,
but they can be expensive and often evolve the use of
chemical toxic chemicals, making biological synthesis
a  more  desirable  option.  In  the  chemical  reducing
method, the reducing agents are chemicals solutions
such as polyol, N2H4, NaBH4 sodium citrate and N,N-
dimethylformide.  In  case  of  biological  method,  a
collection  of  enzymes,  predominantly,  nitrate
reductase plays such a role. In the case of chemical
synthesis,  a  stabilizer  (Surfactant)  is  added  to  the
solution to prevent agglomeration, however, there is
no  need  to  add  a  stabilizing  agent  in  biological
synthesis. Biosynthetic methods of NPs offer a new
and convenient way to synthesize them using natural
reducing and stabilizing agent. Biosynthesis of metal
and semiconductor nanoparticles using organisms has
been  suggested  as  a  highly  viable  and  sustainable
alternative  to  traditional  chemical  and  physical
approaches. Not only it is environmentally friendly but
it  is  also  economically  advantageous.  Particle
dimensions,  size  and  shape  are  critical  factors  in
assessment of NPs synthesis. Therefore, it is crucial to
explore efficient ways to control the morphology and
monodispersity of NPs. It is important to optimize the
reaction conditions. By using screened organisms with
high  production  capability  and  carefully  controlled
reaction  conditions,  it  is  possible  to  obtain  well-
characterized  NPs  at  synthesis  rates  that  are
comparable  to  or  faster  than physical  and chemical
approaches. This eco-friendly method has the potential
to be used in various areas, including pharmaceuticals,
cosmetics, food and medical application. 
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