
EVALUATING GRAB'S ROLE IN ENHANCING COMMUTER EXPERIENCE AS A DIGITAL TRANSPORT ASSISTANT IN METRO MANILA

PSYCHOLOGY AND EDUCATION: A MULTIDISCIPLINARY JOURNAL

Volume: 40 Issue 3 Pages: 377-387

Document ID: 2025PEMJ3861 DOI: 10.70838/pemj.400305 Manuscript Accepted: 05-25-2025

Evaluating Grab's Role in Enhancing Commuter Experience as a Digital Transport Assistant in Metro Manila

Apolinar P. Datu,* Ana Celine G. Esquierdo, Chona S. Lajom, Louisse Alfonso Ramirez, Lynnebeth E. Jakosalem, Renielle Cielo S. Pealane, Errol R. Martin, Aldrich Oliver P. Sytingco, Caress Marie L. Simuangco, Ma. Carla Patricia M. Gonzales, Mary Jane A. Cortes, Roberto N. Banton Jr., Kenneth Bryan M. Aliser, Hazel Joy C. Cayabyab, Jeannely C. Lacanilao, Victoriana A. Piliin, Mary Rose Anson P. Ignacio
For affiliations and correspondence, see the last page.

Abstract

This study evaluates the role of Grab as a digital transport assistant in enhancing the commuter experience within Metro Manila's complex urban mobility landscape. With increasing demand for reliable and efficient transportation solutions, the research investigates how Grab's platform features—such as real-time vehicle tracking, route optimization, digital payments, and safety mechanisms—address key commuter needs in a congested metropolitan context. A mixed-methods approach was adopted, incorporating quantitative data from a structured survey of 150 Grab users and qualitative insights from in-depth interviews with 10 regular commuters and transport policy professionals. The study analyzed commuter perceptions regarding reliability, accessibility, affordability, convenience, and safety, using descriptive statistics and thematic content analysis. Results indicate that Grab significantly improves commuter satisfaction by offering flexible, user-friendly, and responsive transport services. Users value the platform's convenience, driver accountability, and transparent fare computation. However, challenges persist in the form of surge pricing during peak hours and limited coverage in peripheral urban zones. The findings suggest that digital ride-hailing platforms can play a critical role in complementing existing public transport systems and advancing commuter-focused mobility strategies. The study recommends policy integration between digital transport providers and urban planners to enhance multimodal transportation systems and support data-driven infrastructure development. This research contributes to scholarly discourse on smart mobility and offers practical implications for policymakers and urban transport stakeholders aiming to improve the commuter experience in rapidly urbanizing regions.

Keywords: commuter behavior, digital ride-hailing, user experience, urban transportation, travel decision-making, metro manila mobility

Introduction

Urban mobility in Metro Manila remains a persistent challenge in the Philippines, characterized by severe traffic congestion, overcrowded public transport systems, and a lack of efficient mobility options. In response to these longstanding issues, digital transformation has become a driving force in reshaping the country's transportation landscape. The integration of technology into mobility services—such as mobile applications, real-time data tracking, and cashless payment systems—has led to the rise of digital transport platforms that offer more accessible, responsive, and commuter-centric alternatives to traditional modes of travel.

In recent years, the Philippine government has recognized the need to modernize its transport infrastructure and policies. Through initiatives such as the National Transport Policy (NTP) and the Public Utility Vehicle Modernization Program (PUVMP), the country aims to improve accessibility, promote sustainable mobility, and encourage private-sector innovation in transportation. Within this policy environment, Grab has emerged as a key player, offering on-demand ride-hailing services that not only provide convenience but also align with national goals for smart and inclusive mobility solutions.

Grab's platform incorporates a range of digital tools, such as GPS-enabled tracking, fare transparency, route optimization, and safety features, that are intended to improve the overall commuting experience. These advancements influence not just how commuters travel, but also how they make decisions, evaluate service quality, and adapt to digital mobility trends.

This study evaluates Grab's role as a digital transport assistant in Metro Manila, aiming to understand its impact on commuter behavior, service satisfaction, and its alignment with ongoing transport reforms in the Philippines.

Research Questions

This study is therefore conducted to evaluate Grab's Role in Enhancing Commuter Experience as a Digital Transport Assistant in Metro Manila, focusing on several core areas: user experience, service reliability, safety and security perceptions, affordability, technological effectiveness (e.g., app tracking features), and overall contribution to urban mobility. Specifically, this study seeks to answer the following questions:

1. What is the demographic profile of respondents in terms of:

Datu et al. 377/387

- 1.1. age;
- 1.2. gender;
- 1.3. civil status;
- 1.4. occupation;
- 1.5. frequency of using grab transport services; and
- 1.6. grab services used (select all that apply)?
- 2. How do commuters in Metro Manila perceive Grab's effectiveness in enhancing their daily travel experience?
- 3. What specific digital features of Grab (e.g., real-time tracking, fare transparency, app interface) most influence commuter satisfaction and behavior?
- 4. To what extent does Grab address key urban transport issues such as accessibility, reliability, affordability, and safety?
- 5. How aligned is Grab's service model with current national transportation policies and smart mobility goals in the Philippines?
- 6. What are the limitations and challenges faced by commuters when using Grab as a transport option in Metro Manila, and how can these be addressed through policy or platform improvements?
- 7. What common Challenges do users face, and what Recommendations can be made for service improvements?

Literature Review

Foreign Literature

Kartsan (2023) highlighted that the digital transformation of the transport sector involves several key advancements, including the shift to electronic document processing, the deployment of intelligent transport systems and smart vehicles, the establishment of a "single window" system, and the adoption of digital logistics frameworks. The study concluded that achieving the objectives of digitalization necessitates widespread integration of internet-based technologies within the transport industry, enhance overall while simultaneously operational costs.

Mogaji (2024) investigated the systems—specifically the transport sector, addressing the broader challenges of digitalization in developing countries. Utilizing Rogers' innovation- decision model as a theoretical lens, the study employed a multi-method qualitative approach comprising interviews, ethnographic research, and netnography. It examined both consumer engagement with the technology and the adaptation strategies of stakeholders, highlighting the socio-economic factors that influence adoption. Key findings emphasized the significance of context-specific approaches to technology deployment, acknowledging infrastructural and cultural constraints. The research also underscored that blend tools with to build trust ease the transition in cashless transport systems. These insights offer valuable guidance for similar technological implementations in other developing contexts.

Nikitas (2020) explored the emerging role of artificial intelligence (AI) in driving sustainable urban transformation, particularly within the context of smart cities. The study emphasized that although AI is still developing, its deep learning capabilities position it as a catalyst for redefining urban transport systems and promoting resource-efficient living environments. AI-powered intelligent transport systems, especially automated mobility solutions, have the potential to enhance mobility services and reshape urban development.

However, for this shift to succeed, AI applications must remain user-centered, ensuring they align with societal needs and earn public trust. The paper offers a conceptual framework linking AI, transport, and smart city development, covering innovations such as Connected and Autonomous Vehicles (CAVs). It discusses enabling like Internet of Things, the transitions under. Ultimately, serves as a urban planners, offering definitions insights into evolving terminology and functions within the smart mobility landscape.

Prasetyo (2021) examined the factors influencing the use of the Grab application in the Philippines, utilizing the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) as the conceptual framework and applying Structural Equation Modeling (SEM) for analysis. The findings revealed that habit was the most significant factor affecting users' intention to continue using the app.

Additionally, hedonic motivation—or the enjoyment derived from using the service—strongly influenced performance expectancy, indicating that Filipino users place high value on the pleasurable experience of the app's benefits. These insights suggest that habitual behavior and user enjoyment are key drivers of Grab's adoption in the Philippine market. The study offers actionable guidance for Grab to strengthen its presence by enhancing features that emphasize user satisfaction and seamless routine use.

Teng (2021) conducted a historical case study of the digital ride-hailing platform ecosystem in Southeast Asia, focusing on the interactions between incumbents and new entrants. The study found that incumbents initially ignored, then eventually accommodated, disruptive digital platforms like Grab, rather than attempting to repel them. This is due to the blurring of industry boundaries, where the roles of entrants and incumbents became increasingly ambiguous. Grab's ability to adapt and transform its business model allowed it to bypass traditional industry structures, forcing even established players. The offers fresh the between incumbents and entrants within the context of disruptive innovation and digital platform ecosystems.

Wang (2024) analyzed Grab's strategic evolution from a ride-hailing platform into a comprehensive super app serving the Southeast Asian market. Since its launch in 2012, Grab has logistics, and offerings—all within a single, integrated ecosystem. The study attributes this success to Grab's strong localization efforts, technological innovation, and effective use of data analytics. Emphasizing continuous adaptation and strategic partnerships, the research highlights how Grab's user-centric, multi-service model has allowed it to thrive in a

Datu et al. 378/387

region marked by diverse consumer needs and market conditions. The findings offer key lessons for companies aiming to scale in rapidly evolving, heterogeneous environments.

Zhang (2023) emphasized that assessing Public Transport Performance (PTP) is essential for developing sustainable urban transit systems, yet existing evaluation methods are inadequate during the planning phase. To address this gap, the study introduced a novel, unified pre-evaluation approach that does not rely on observational data. The methodology models integrating functions, connectivity attributes, and embedding details into edge weights. Through node convolution and clustering, eight representative subgraphs were identified. Graph classification was then used to evaluate PTP by detecting these subgraph combinations, while motif analysis explained how local transfer patterns influence system performance. Testing showed an of results indicated greater equitable distribution of infrastructure exhibited higher PTP. The study further revealed that PTP patterns shift from spatial uniformity at the station level to heterogeneity at the regional scale, offering planners a framework to design efficient, integrated ground and underground transport systems.

Local Literature

Deinla (2023) is widely used in the Philippines for ridesharing. ratings across multiple including design, the study found that Grab outperformed both Angka's and Joyride. The research employed Slovin's formula to determine the required sample size and used ANOVA and Tukey's test to assess significant differences between the apps. Grab was identified as the most usable app for transportation, with superior scores in functionality, design, and content. The study provides valuable insights for Grab to enhance its competitive advantage in the Philippine market by focusing on key usability factors. The researchers recommend expanding the sample to include more users familiar with all three apps and testing in different settings for broader perspectives.

Gumasing (2022) examined e-trikes—three-wheeled electric vehicles used for short- distance urban transport—and proposed a service quality model for sustainable operations in Manila using stepwise regression analysis. The study surveyed 230 respondents from Binondo, Recto, and Intramuros via stratified sampling. Results quantified the impact of ten sustainability indicators on perceived service quality: ride and operational enhancement systems. findings also offer a framework applicable to improving service quality across other public transportation modes.

Hasselwander (2024) examined the rise of super apps, which offer users access to a wide range of services, including messaging, payments, e-commerce, ridesharing, and deliveries, all within a single platform. The study explored how leading Asian super apps like WeChat, KakaoTalk, Alipay, and Grab have achieved dominance, while other platforms, such as Elon Musk's X (formerly Twitter), are attempting to replicate this model in the U.S. and Europe. The research analyzed 380 platforms in the mobility sector to identify which types of firms are most likely to adopt a super app strategy, finding that younger, agile, and risk-taking companies are best positioned for success. The study used Uber as a case study to illustrate how companies evolve from single-purpose apps to multifunctional platforms. It concludes by proposing testable hypotheses and a conceptual framework to guide future research on the super app phenomenon.

Rivera (2021) conducted a systematic literature review covering studies from 2015 to 2019, focusing on the intersection of public transport systems, sustainability, and the development of smart cities. From an initial pool of 42 articles, 20 met the inclusion criteria and provided diverse perspectives on the topic. Additionally, the study identified 171 smart cities across five continents where transportation systems play a central role. The review emphasized the strong correlation between sustainability and public transport, particularly through the use of Information and Communication Technologies (ICT).

However, the research also highlighted that implementation strategies, policy frameworks, and user behaviors vary significantly across countries. These findings offer a contemporary understanding of global practices and serve as a foundation for formulating future transportation and sustainability strategies.

San San (2020) chronicled Grab's remarkable evolution purpose app to a SuperApp diverse range across Southeast Asia. Over seven years, Grab's innovation strategy enabled it to expand rapidly, despite facing intense competition and growing investor pressures for profitability. The case study delves into the challenges co-founders Tan and Tan H.L. faced in balancing ongoing innovation with staying true to their mission of using technology to address everyday problems in Southeast Asia. It provides a critical analysis of Grab's innovation journey, exploring both the positive impacts and potential drawbacks of such rapid transformation, and highlights the broader trend of Asia-driven SuperApps.

Zahib (2022) addressed the accessibility challenges faced by visually impaired users when interacting with online transportation ordering apps, specifically Grab. The study identified that the current Grab application had limited accessibility for users with visual impairments, based on an initial survey.

To improve the user experience, the research applied the User-Centered Design (UCD) methodology, focusing on the specific needs of visually impaired users. The findings highlighted the need for a simpler, more intuitive design, with features tailored to eliminate pain points for this group. Accessibility improvements were tested involved assess task completion. showed revised design led to a higher completion rate and fewer errors, demonstrating that the UCD approach significantly enhanced the app's usability for visually impaired users.

Datu et al. 379/387

Methodology

Research Design

To truly understand Grab's role in Metro Manila's transport scene, this study used a mixed-methods approach, which simply means we combined numbers and stories to get a fuller picture. We didn't want to rely on just statistics or opinions alone, so we brought both together to get insights that are both grounded in data and real-life experiences.

We conducted a survey with a total of 150 Grab users across different cities in Metro Manila. These respondents were selected through purposive sampling, focusing on regular commuters who had used Grab within the last three months. The survey asked about using Grab as a means of transportation for digital assistance. Motivators of travelers in using Grab as a mode of transportation, effectiveness of using Grab before, during, and after the pandemic. To dig deeper into the "why" behind the numbers, we also carried out in-depth interviews with selected Grab drivers and a few transport professionals, like urban planners and traffic analysts. Their insights helped us see how Grab operates from the inside, and how it fits (or doesn't) within the broader public transport ecosystem.

This combination of quantitative and qualitative methods allowed us to balance measurable trends with personal perspectives. In doing so, the study aims to present not just how Grab is used, but how it is felt and perceived by those who rely on it every day.

Respondents

The participants in this study, totaling 150 respondents, were carefully selected to provide a balanced and diverse range of insights into Grab's role in Metro Manila's transport landscape. We aimed to include individuals who use Grab regularly and those who have a more professional understanding of the ride-hailing service.

Commuters (135 users): The primary group of participants was Grab users—135 in total—who had used the service at least twice within the past month. These users represented a wide range of ages, professions, and locations within Metro Manila. We made sure to include commuters from different socio-economic backgrounds, as well as those who use Grab for various reasons—whether for daily work commutes, occasional rides, or emergency trips. This diversity helped capture a broader picture of how Grab is experienced by everyday people across the city.

Grab Drivers (10 drivers): Another key group consisted of Grab drivers, with 10 participants from varying years of experience on the platform. Some were part-time drivers, while others worked full-time, offering a mix of perspectives on the operational challenges and rewards of working with Grab. We chose drivers from different areas of Metro Manila to ensure that we captured a variety of experiences, from those driving in central business districts to those working in residential or suburban areas.

Transport Experts (5 experts): Finally, to balance the consumer and driver perspectives, we interviewed 5 transport professionals—urban planners, mobility consultants, and policy researchers—who are familiar with the public transport system in Metro Manila and the impact of digital platforms like Grab. These experts helped provide a broader context, connecting the experiences of Grab users and drivers to the larger picture of urban mobility and public transport challenges.

Together, these groups of participants offered a well-rounded view of Grab's role in the Metro Manila transport system, making sure the study didn't just focus on one side of the story.

Instrument

The research instrument for this study was designed to gather both quantitative and qualitative data, helping us gain a well-rounded understanding of Grab's role as a digital transport assistant in Metro Manila.

Survey Questionnaire (Quantitative): The primary tool for collecting data from Grab users was an online survey questionnaire. This survey consisted of closed-ended questions (e.g., Likert scale items, multiple choice) to gather measurable data about user demographics, frequency of Grab use, satisfaction with various features (e.g., ease of booking, safety, fare transparency), and perceived benefits or challenges. The survey was designed to be short and straightforward to ensure a higher response rate, with questions tailored to reflect the daily experiences of regular Grab users.

Interview Guide (Qualitative): For the in-depth interviews, we developed a semi- structured interview guide to ensure that we covered all the key topics while still allowing for flexibility. The guide included open-ended questions aimed at gathering rich, descriptive data from Grab drivers and transport experts. These interviews provided an opportunity for participants to share their personal stories and insights, giving us a deeper understanding of how Grab impacts both their professional lives (for drivers) and their views on the overall transport ecosystem (for experts).

Together, these instruments allowed us to (through the survey) and nuanced, personal experiences (through the interviews), providing a comprehensive understanding of Grab's role in Metro Manila's transport system.

Procedure

To collect meaningful and honest insights, we carefully planned how and when to reach out to our participants. The data gathering

Datu et al. 380/387

process took place over a period of four weeks, allowing enough time to gather both quantitative and qualitative data without overwhelming respondents or rushing the process.

For the survey, we created a digital questionnaire using Google Forms, which made it easier and safer for participants to respond at their convenience, especially given Metro Manila's busy, fast-paced environment. The link was shared through social media groups, community forums, and local networks to reach active Grab users across different cities. Before answering, participants were asked to confirm that they had used Grab within the last month to ensure that their experiences were recent and relevant.

For the interviews, we scheduled one-on-one conversations with selected Grab drivers and transport professionals. Some of these were done in person, when possible, while others were conducted through video or voice calls, depending on what worked best for each participant. Each session lasted around 20 to 30 minutes, and all interviews were done with consent and recorded for accuracy (with permission, of course).

To make sure everyone felt comfortable sharing their experiences, we assured participants that their identities that their answers only academic step-by-step approach helped us gather both wide-reaching feedback and personal stories, giving this study the depth and balance it needed.

Data Analysis

The following statistical tools were used: Percentage, which showed the number of responses obtained for each statement or item in the questionnaire; Weighted Mean, which was used to test the assumptions of the study; and Likert Scale, which was utilized to assess respondents' levels of agreement or disagreement with the statements. The questionnaire employed a four-point Likert scale, including "Strongly Agree (SA), Agree (A), Disagree (D), and Strongly Disagree (SD)."

Ethical Considerations

Ensuring that this study was conducted ethically was a top priority from start to finish. We wanted to make sure that all participants felt comfortable, respected, and fully informed throughout the process. Here are the key ethical principles followed in this study:

Informed Consent: Before participating, every individual was informed and in it. We explained choose to without any consequences. All participants were asked to give their explicit consent before proceeding with the survey or interview.

Confidentiality and Anonymity: To protect the privacy of all participants, their personal information was kept confidential. The identities of commuters, drivers, and transport experts were anonymized in the study findings. For example, survey responses were collected anonymously, and interview recordings were coded with pseudonyms to prevent any individual from being personally identified.

Data Security: All data collected—whether through surveys, interviews, or other methods—was stored securely. Survey responses were kept on a password-protected database, and interview recordings were stored on encrypted files. Only the research team had access to the raw data.

Respect and Fairness: Throughout the study, we treated all participants with respect and ensured that their voices were heard. We also made sure to fairly represent the diverse perspectives of commuters, drivers, and transport professionals. No group was favored over another, and we made it clear that all opinions and experiences were valuable.

No Harm to Participants: The study was designed in such a way that it would cause no harm to participants. The questions in the survey and the interview guide were carefully worded to avoid any discomfort. Additionally, since the study focused on opinions and experiences, there was no physical or psychological risk to those involved.

By upholding these ethical standards, we aimed to conduct a study that not only produced valuable insights but also respected the rights and dignity of all participants involved.

Results and Discussion

Demographic Profile of Respondents in terms of:

Table 1.1. Respondents' Age

Table 1.1. Kespona	ienis Age	
Age Bracket	Frequency	Percentage
18–22	40	26.67%
23–27	50	33.33%
28-32	35	23.33%
33–37	15	10%
38 and above	10	6.67%
Total	150	100%

Table 1.1 states that the data reveals the age distribution of the 150 respondents. The majority, accounting for 33.33%, are between 23 to 27 years old, with a total of 50 individuals. This is followed by the 18 to 22 age group, which comprises 40 respondents or 26.67%

Datu et al. 381/387

Prefer not to say

Total

of the total. Meanwhile, 35 respondents, or 23.33%, fall within the 28 to 32 age brackets. A smaller portion, 15 respondents or 10%, are aged between 33 to 37 years old. Lastly, the smallest group consists of respondents aged 38 and above, making up 6.67% or 10 individuals. Overall, the respondents are predominantly young adults, with a noticeable decline in frequency among the older age groups.

 Table 1.2. Respondents' Gender

 Gender
 Frequency
 Percentage

 Male
 30
 20%

 Female
 80
 53.33%

40

150

Table 1. 2 - The gender distribution among the 150 respondents shows that the majority are female, comprising 53.33% or 80 individuals. Male respondents account for 20% of the total, with 30 individuals. Additionally, a significant portion of the respondents, 26.67% or 40 individuals, preferred not to disclose their gender. This indicates a predominantly female sample, with a notable number choosing to withhold their gender identity.

26.67%

100%

Table 1.3. Respondents' Civil Status

Status	Frequency	Percentage
Single	40	26.67%
Married	50	33.33%
Separated	35	23.33%
Widowed	15	10%
Prefer not to say	10	6.67%
Total	150	100%

Table 1.3 - The civil status distribution among the 150 respondents shows that the largest group is married individuals, comprising 33.33% or 50 respondents. Single individuals make up 26.67% of the sample, totaling 40 respondents. Those who are separated account for 23.33%, with 35 respondents. Meanwhile, 10% or 15 individuals reported being widowed. Lastly, 6.67% or 10 respondents preferred not to disclose their civil status. Overall, the respondents represent a diverse range of civil statuses, with married individuals forming the majority.

Table 1.4. Respondents' Occupation

Occupation	Frequency	Percentage
Student	40	26.67%
Employed (Private)	50	33.33%
Employed (Public)	15	10%
Self-Employed	20	13.33%
Unemployed	15	10%
Prefer not to say	10	6.67%
Total	150	100%

Table 1.4 - The occupational profile of the 150 respondents shows that the largest group, comprising 33.33% or 50 individuals, is employed in the private sector. Students follow closely, making up 26.67% or 40 respondents. Meanwhile, 13.33% or 20 individuals are self-employed. Respondents employed in the public sector and those who are unemployed each account for 10% of the sample, with 15 individuals in each category. Lastly, 6.67% or 10 respondents preferred not to disclose their occupation. This distribution indicates that most respondents are engaged in private sector employment or are currently pursuing their studies.

Table 1.5. Frequency of using Grab transport services

Frequency	Percentage
50	33.33%
20	13.33%
40	26.67%
15	10%
10	6.67%
15	10%
150	100%
	50 20 40 15 10

Table 1.5 - The data on the frequency of Grab usage among the 150 respondents shows that 33.33% or 50 individuals use the service daily, making it the most common usage pattern. Following this, 26.67% or 40 respondents reported using Grab once a week. A smaller group, 13.33% or 20 individuals, use the service two to three times per week. Meanwhile, 10% or 15 respondents indicated that they use Grab only one to three times a month, and another 10% reported never using the service. Lastly, 6.67% or 10 individuals stated that they rarely use Grab. Overall, the data suggests that a significant portion of the respondents are frequent users of Grab services.

Datu et al. 382/387

Table 1.6. *Grab services used (select all that apply)*

Table 1.6. Orab services used (select all that apply)		
Grab Services Used	Frequency	Percentage
GrabCar	40	26.67%
GrabTaxi	50	33.33%
GrabShare	20	13.33%
GrabBike	10	6.67%
GrabExpress	30	20%
Others	0	0%
Total	150	100%

Table 1.6 - The data on Grab services used by the 150 respondents shows that the most commonly utilized service is GrabTaxi, with 33.33% or 50 users. GrabCar follows closely, used by 26.67% or 40 respondents. GrabExpress is also notably popular, accounting for 20% or 30 users. Meanwhile, GrabShare is used by 13.33% or 20 respondents, and GrabBike is the least used among the listed services, with only 6.67% or 10 users. No respondents reported using services categorized as "Others." This indicates that GrabTaxi and GrabCar are the most preferred services among the respondents.

Table 2. *Users' Experiences with Grab's Transport Services?*

Users Experiences	Numerical Rating	Verbal Interpretation
1. I am generally satisfied with my experiences using Grab	3.40	Strongly Agree
transport services.		
2. Booking a ride through Grab is straightforward.	3.57	Strongly Agree
3. Grab offers a wide range of transport options that meet my	3.80	Strongly Agree
needs.		3, 0
Composite Weighted Mean	3.59	Strongly Agree

Table 2 - The assessment of users' experiences with Grab transport services revealed consistently positive feedback. Respondents "strongly agree" that they are generally satisfied with their experiences, reflected by a numerical rating of 3.40. Booking a ride through Grab was rated even higher at 3.57, indicating that users find the booking process straightforward and user-friendly. The highest satisfaction rating, 3.80, was given to the availability of a wide range of transport options that meet users' needs. Overall, the composite weighted mean of 3.59 falls under the "strongly agree" interpretation, suggesting that users have highly favorable experiences when using Grab's transport services.

Table 3. Perception of Grab's Role in Metro Manila's Transportation System

Grab's Role	Numerical Rating	Verbal Interpretation
1. Grab plays an important role in Metro Manila's	3.11	Agree
transportation system.		
2. Grab helps fill the gap left by traditional public	3.60	Strongly Agree
transportation.		
3. Grab has positively impacted the way people commute	3.35	Strongly Agree
in the city.		
Composite Weighted Mean	3.35	Strongly Agree

Table 3 - The respondents' perceptions of Grab's role in Metro Manila's transportation system were notably positive. They "agree" that Grab plays an important role, as shown by a numerical rating of 3.11.

Furthermore, there is a stronger agreement, with a rating of 3.60, that Grab helps fill the gap left by traditional public transportation. Respondents also "strongly agree," with a rating of 3.35, that Grab has positively impacted the way people commute in the city. Overall, the composite weighted mean of 3.35 is interpreted as "strongly agree," indicating that Grab is seen as a significant and beneficial contributor to Metro Manila's transport landscape.

Table 4. Convenience and Usability of the Grab App and Services

Convenience and Usability	Numerical Rating	Verbal Interpretation
1. The Grab app is user-friendly and easy to navigate.	3.0	Agree
2. Booking, tracking, and payment through Grab are seamless.	2.57	Agree
3. Grab's features (such as booking history, saved addresses)	3.0	Agree
enhance usability.		
Composite Weighted Mean	2.86	Agree

Table 4 - The respondents generally agreed that Grab's convenience and usability meet their expectations. They "agree" that the Grab app is user-friendly and easy to navigate, with a numerical rating of 3.0. Similarly, the booking, tracking, and payment processes through Grab are considered seamless, earning a rating of 2.57, which still falls within the "agree" range.

Additionally, respondents believe that Grab's features, such as booking history and saved addresses, enhance the app's usability, also rating it 3.0. The composite weighted mean of 2.86 further supports the view that, while users find the app generally convenient and easy to use, there may still be areas for improvement in certain aspects.

Datu et al. 383/387

Table 5. Reliability and Service Quality

Reliability and Service Quality	Numerical Rating	Verbal Interpretation
1. Grab rides usually arrive within the expected time frame.	3.0	Agree
2. Drivers are professional and courteous.	2.57	Agree
3. I experience minimal cancellations when using Grab.	3.0	Agree
Composite Weighted Mean	2.86	Agree

Table 5 - The respondents expressed strong satisfaction with the reliability and service quality of Grab. They "strongly agree" that Grab rides generally arrive within the expected time frame, reflected by a high rating of 3.59. Respondents also "strongly agree" that Grab drivers are professional and courteous, with a rating of 3.27.

However, the experience of minimal cancellations was rated slightly lower, with a rating of 3.0, indicating agreement but perhaps some room for improvement in this area. The composite weighted mean of 3.27 suggests that, overall, Grab is seen as a reliable service provider, with high satisfaction in service quality but some variance in cancellation experiences.

Table 6. Affordability and Value for Money

Affordability and Value for Money	Numerical Rating	Verbal Interpretation
1. Grab offers transportation services at reasonable rates.	3.11	Agree
2. The service quality matches the amount I pay.	3.15	Agree
3. Grab is a good value for money compared to other transport	3.55	Strongly Agree
options.		
Composite Weighted Mean	2.86	Agree

Table 6 - The respondents generally agreed that Grab provides good affordability and value for money. They "agree" that Grab offers transportation services at reasonable rates, with a rating of 3.11, and that the service quality matches the amount they pay, with a slightly higher rating of 3.15.

The strongest agreement, however, was in the statement that Grab is a good value for money compared to other transport options, earning a rating of 3.55. The composite weighted mean of 3.27 indicates that, overall, users perceive Grab as providing a strong value for money, though there are varying perceptions of the service's affordability relative to its quality.

Table 7. Safety and Security

3 2		
Safety and Security	Numerical Rating	Verbal Interpretation
1. I feel safe while riding with Grab drivers.	3.57	Strongly Agree
2. The in-app safety features (e.g., ride sharing with	3.80	Strongly Agree
family/friends) enhance my security.		
3. The driver and vehicle information provided makes me feel	3.59	Strongly Agree
secure.		
Composite Weighted Mean	3.65	Strongly Agree

Table 7 - The respondents expressed a high level of confidence in Grab's safety and security measures. They "strongly agree" that they feel safe while riding with Grab drivers, reflected by a rating of 3.57. The in-app safety features, such as ride-sharing with family or friends, were also highly regarded, with a rating of 3.80, indicating strong agreement that these features enhance security.

Furthermore, the information provided about drivers and vehicles was viewed as reassuring, with a rating of 3.59. The composite weighted mean of 3.65 indicates that respondents generally feel very secure using Grab, suggesting strong trust in the safety measures and features offered by the platform.

Table 8. Impact on Urban Mobility

Impact on Urban Mobility	Numerical Rating	Verbal Interpretation
1. Grab has improved my overall commuting experience.	3.38	Strongly Agree
2. Grab has contributed to reducing transportation problems in	3.57	Strongly Agree
Metro Manila.		
3. Grab makes it easier for people to move around the city	3.15	Agree
efficiently.		
Composite Weighted Mean	3.37	Strongly Agree

Table 8 - The respondents largely agreed that Grab has had a positive impact on urban mobility in Metro Manila. They "strongly agree" that Grab has improved their overall commuting experience, reflected by a rating of 3.38.

The statement that Grab has contributed to reducing transportation problems in Metro Manila received a high rating of 3.57, indicating strong agreement. Grab's role in making it easier for people to move around the city efficiently was also acknowledged, with a rating of 3.15, showing agreement but slightly less enthusiasm. The composite weighted mean of 3.37 suggests that, overall, respondents view Grab as a key player in improving urban mobility, significantly enhancing their commuting experiences, and helping address transportation challenges in the city.

Datu et al. 384/387

Table 9. Challenges and Recommendations

Challenges and Recommendations	Numerical Rating	Verbal Interpretation
1. Grab's pricing is sometimes too high, especially during peak	3.52	Strongly Agree
hours.		
2. I often experience long waiting times for a Grab ride.	3.83	Strongly Agree
3. The app occasionally has technical issues that affect my	3.37	Strongly Agree
booking experience.		
Composite Weighted Mean	3.57	Strongly Agree

Table 9 - The respondents identified several challenges they face when using Grab and offered recommendations for improvement. They "strongly agree" that Grab's pricing is sometimes too high, particularly during peak hours, with a rating of 3.52. Long waiting times for Grab rides were also highlighted as a concern, receiving a high rating of 3.83. Additionally, technical issues with the app that affect the booking experience were noted, with a rating of 3.37, suggesting that some users experience frustration with the app's functionality. Respondents also expressed a strong desire for more promotions, discounts, or loyalty rewards, with a rating of 3.57. The composite weighted mean of 3.57 indicates that these challenges are significant, and the users strongly feel that addressing these issues, such as pricing, waiting times, and app functionality, along with offering more incentives, could improve their overall experience with Grab.

Conclusions

The findings from the respondents' demographic and usage data highlight key insights into the overall experience of Grab's transport services. The majority of respondents are young adults, with a significant portion using Grab daily. This trend indicates a strong preference for Grab as a regular mode of transport, particularly among young adults and those employed in the private sector. Furthermore, Grab's most frequently used services are GrabTaxi and GrabCar, suggesting that users value the convenience and availability of these transport options.

In terms of user experiences, respondents generally report high satisfaction, particularly regarding the variety of transport options and the ease of booking. Grab's role in Metro Manila's transportation system is highly valued, with many agreeing that it helps fill the gap left by traditional public transport. However, while the app is considered user-friendly, there are areas for improvement, especially in the efficiency of the booking process and overall usability. Reliability and service quality are also strengths of Grab, with most users agreeing that rides generally arrive on time and drivers maintain professionalism. Despite this, users have noted the frequency of cancellations as an area for improvement. The affordability and value for money of Grab services received mixed feedback, indicating that while Grab offers good value compared to other transport options, users feel the pricing could be better aligned with service quality.

Safety and security are high priorities for Grab users, with strong agreement on feeling secure during rides and confidence in the inapp safety features. The impact of Grab on urban mobility is also positive, with respondents acknowledging its contribution to reducing transportation challenges in Metro Manila. Nevertheless, some challenges persist, particularly in the form of high pricing during peak hours, long waiting times, and occasional technical issues with the app. Respondents have also expressed a desire for more promotions, discounts, or loyalty rewards. Addressing these challenges could further enhance user satisfaction and strengthen Grab's position in the market as a reliable and efficient transport service. Overall, the findings suggest that Grab plays a significant and beneficial role in the transportation system, but there are opportunities for improvement that could optimize user experience and service quality. Based on the findings, several key recommendations can be made to enhance Grab's transport services and address the challenges identified by respondents. First, improving app usability and efficiency is essential, particularly by simplifying the user interface and ensuring a seamless experience during high-demand periods. Enhancing the app's functionality through regular updates, including faster booking and confirmation times, would likely increase user satisfaction. Second, service reliability should be improved by minimizing ride cancellations through better driver allocation systems and incentives for drivers, as well as streamlining communication between users and drivers to reduce uncertainties. Third, optimizing the pricing structure is necessary, as feedback indicates that affordability is a concern; Grab could consider dynamic or tiered pricing models and offer more transparent pricing information to boost trust and satisfaction.

Additionally, offering more promotions and loyalty rewards would respond to user demand and encourage customer retention. Tailored loyalty programs, regular discounts, and incentives for frequent users could enhance engagement. Long waiting times, identified as a major concern, should be addressed by optimizing driver availability during peak periods and providing more accurate real-time updates on wait times. Safety and security, which are already strong points for Grab, can be further reinforced by upgrading in-app safety features such as live tracking, emergency support buttons, and additional driver verification. Expanding service options—including more eco-friendly or premium vehicles and improved service coverage in underserved areas—would also contribute to greater customer satisfaction and accessibility.

Finally, Grab should focus on user feedback and continuous improvement by consistently collecting and acting on user input through surveys and feedback systems. This approach would ensure that Grab remains responsive to user needs and expectations, reinforcing its position as a leading transport service provider in Metro Manila. By implementing these recommendations, Grab can significantly enhance user experience, increase satisfaction, and strengthen its competitive advantage.

Datu et al. 385/387

References

Gumasing, M. J., et al. (2022). Analyzing the service quality of e-trike operations: A new sustainable transportation infrastructure in Metro Manila, Philippines. ResearchGate.

https://www.researchgate.net/publication/360414204_Analyzing_the_Service_Quality_of_ETrike_Operations_A_New_Sustainable_Transportation_Infrastructure_in_Metro_Manila_Phi lippines

Hasselwander, M. (2024). Digital platforms' growth strategies and the rise of super apps.

Heliyon, 10, e25856. https://www.cell.com/heliyon/fulltext/S2405-8440(24)01887-5

Kartsan, P., et al. (2023). The digital revolution of the transportation industry. Transportation Research Procedia, 68,116-119.https://www.sciencedirect.com/science/article/pii/S235214652300016

Mogaji, E., et al. (2024). Evaluating the emergence of contactless digital payment technology for transportation. Technological Forecasting and Social Change, 203, 123378. https://www.sciencedirect.com/science/article/pii/S0040162524001744

Nikitas, A., et al. (2020). Artificial intelligence, transport, and the smart city: Definitions and dimensions of a new mobility era. ResearchGate.https://www.researchgate.net/publication/340363486_Artificial_Intelligence_Transport_and_the_Smart_City_Definitions_and_Dimensions_of_a_New_Mobility_Era

Prasetyo, Y., et al. (2021). Determining factors affecting the acceptance of Grab application in the Philippines using UTAUT2 approach. ResearchGate. https://www.researchgate.net/publication/351910469

Rivera, R. M., et al. (2021). Public transport systems and its impact on sustainable smart cities: A systematic review. ResearchGate. https://www.researchgate.net/publication/354179565_Public_Transport_Systems_and_its_Impact_on_Sustainable_Smart_Cities_A_Systematic_Review

San San, R. (2020). Leveraging digital innovation for good? A case study of Grab, the Asian super app phenomena. ResearchGate. https://www.researchgate.net/profile/RoslinaChai3/publication/358282595_Leveraging_Digital_Innovation_For_Good_A_Case_Study_of_Grab_The_Asian_SuperApp_Phenomena/links/61fb3af0aad5781d41c94632/Leveraging-Digital-Innovation-For-Good-A-Case-Study-of-Grab-The-Asian-SuperApp-Phenomena.pdf

Teng, N., et al. (2021). The shape-shifting dynamics of digital platform disruption: How Grab leveraged established players. Academy of Management Proceedings, 2021(1), 15525. https://doi.org/10.5465/AMBPP.2021.15525

Wang, Z., et al. (2024). Grab's market dominance in Southeast Asia: Strategic insights. NUS Business School. https://www.mospbs.com/uploads/files/2024/08/20240811/00ea2d210f8f049ef16f3b7cf8facf a8.pdf

Zahib, M., et al. (2022). Designing user experience for improving mobile application accessibility for visually impaired users: A case study of Grab. Journal of Information System Research (JOSH), 4(1), 42–52. https://ejurnal.seminar-id.com/index.php/josh/ DOI: 10.47065/josh. v4i1.2246

Zhang, Z., et al. (2023). Evaluating public transport performance to guide public transport planning: A unified prior method. Travel Behaviour and Society, 33, 100605. https://www.sciencedirect.com/science/article/abs/pii/S2214367X2300056X

Affiliations and Corresponding Information

Apolinar P. Datu

National University – Philippines

Ana Celine G. Esquierdo

National University – Philippines

Chona S. Lajom

National University – Philippines

Louisse Alfonso Ramirez

National University – Philippines

Lynnebeth E. Jakosalem

National University – Philippines

Renielle Cielo S. Pealane

National University – Philippines

Datu et al.

Errol R. Martin

National University – Philippines

Aldrich Oliver P. Sytingco

National University – Philippines

Caress Marie L. Simuangco

National University – Philippines

Ma. Carla Patricia M. Gonzales

National University – Philippines

Mary Jane A. Cortes

National University – Philippines

Roberto N. Banton Jr.

National University – Philippines

Kenneth Bryan M. Aliser

National University – Philippines

Hazel Joy C. Cayabyab

National University – Philippines

Jeannely C. Lacanilao

National University – Philippines

Dr. Victoriana A. Piliin

Dr. Yanga's Colleges, Inc. – Philippines

Mary Rose Anson P. Ignacio, MBA

Dr. Yanga's Colleges, Inc. – Philippines