
PERCEIVED EFFECTIVENESS AND CHALLENGES IN FLIPPED LANGUAGE LEARNING

PSYCHOLOGY AND EDUCATION: A MULTIDISCIPLINARY JOURNAL

2023 Volume: 11 Pages: 107-117

Document ID: 2023PEMJ945 DOI: 10.5281/zenodo.8180670 Manuscript Accepted: 2023-23-7

Perceived Effectiveness and Challenges In Flipped Language Learning

Ruiyue Xiong*, Gregerlin I. Lambenicio For affiliations and correspondence, see the last page.

Abstract

The flipped learning paradigm enables teachers to prioritize active learning more during class time by making lecture materials and presentations available to students at home or outside of class. First, the effectiveness of flipped language acquisition was assessed. Data were gathered via a questionnaire using three analysis techniques: descriptive, correlation, and regression. The links between perceived characteristics were then investigated, including ease of use, perceived self-efficacy, perceived technology use, perceived learning climate, perceived online and offline engagement, and students' perceived effectiveness in flipped language learning. The study's conclusions and their implications will be further discussed and outlined. An in-depth examination of the influencing factors enables teachers to comprehend the underlying problems that undermine the efficacy of flipped classrooms and make perceptive recommendations for improving student learning, particularly during the pandemic.

Keywords: perceived effectiveness, challenges, flipped online-offline learning, language learning, ease of use, technology use, self-efficacy, learning climate

Introduction

During COVID-19, across the globe, we have come across many learners overwhelmed by the amount of online teaching available to them while leaving them to learn superficially, according to Nolan et al. (2021). The pandemic has disturbed all sectors, especially with an immediate impact on educational systems. To tackle this problem, many educational institutions have taken adequate measures to confront the Covid-19 pandemic, reaching out to students with different needs and moving beyond a shallow learning experience. One of these approaches is the most popular emerging, flipped learning, designed to keep students engaged inside and outside the classroom. Cevikbas M.et al. (2022) provide a complete account of flipped learning, inverting the traditional learning process by exposing learners to recurring learning resources before class. Later, in the classroom, teachers will guide students through homework, problem-solving practices, and peer interaction to stimulate differentiated pedagogy and deeper learning. It is a potential framework to ensure students can access a more individualized education. Strela et al. (2020) further argue that it also offers the possibility of more structured and independent learning and inspires pupils to probe and interact with faculty members, partners, project facilitators, and learning resources. Based on this blended learning method created by flipped class, learners with individual differences will be allowed to accomplish their learning goals with operational collaboration. A clear conclusion has been drawn by Nolan et al. (2021), flipped learning is an active, student-centered approach aimed at improving

the quality of learning within the classroom. Its advantages have remained widespread among scholars and instructors at home and abroad, offering innovative ideas for significant educational advances.

Despite increasing interest in flipped learning, there appears to be no consensus on its effectiveness in driving achievement (Chen, H.R. et al., 2022). Since systematic review studies on its impact and essence have not been fully embodied, flipped learning rarely reinforces the effectiveness of instruction but merely remains at a superficial stage. Shemshack, A. (2020) also expounds that research on students' responses and readiness is still in its infancy. Flipped learning and digital information must nevertheless show promise in the interim. Even some claim that flipped classes appears less beneficial for pupils with lesser competency in the target language in foreign language teaching (Vitta et al., 2020). So, implementing effective flipped learning is considered imperfect, and many inefficiencies are still mentioned above. This has left many teachers needing clarification when it comes to using this approach and flipped learning is only a formality and not as effective as it could be. Many researchers have studied the effectiveness of flipped learning, and there are still many studies on the relationship between individual factors and flipped learning. However, these studies have yet to analyze the elements that influence the effectiveness of flipped language learning, and they do not provide teachers with clear directions. The current study looks at the variables that affect flipped English instruction. After the outbreak, a thorough examination of the relevant aspects can improve the usage of flipped language learning and progressively address the problem of

Xiong & Lambenicio 107/117

students' inefficient learning. The survey included questions about the difficulties faced by language learners.

Research Questions

This study aims to identify the elements that make flipped language learning practical and their interactions. In this study, the following queries will be answered.

- 1. What is the perceived level of effectiveness of flipped language learning?
- 2. What is the relationship between factors: ease of use, self-efficacy, use of technology, learning climate, online-offline interaction, and students' perceived effectiveness in flipped language learning?
- 3. What challenges do language learners experience in flipped language learning?

Literature Review

Criticism and research at home and abroad are diverse and cover many topics. Many critics hold different opinions on the relevant themes, theories, and principles. The main critical views focus on the following areas:

The theory behind flipped learning

Salem et al. (2018) claim that flipped learning began as a pedagogical strategy in which instructors moved direct instruction from a group learning environment to a private learning environment and then changed the ensuing group environment into a dynamic, interactive learning environment where instructors supported students in applying concepts and engaging creatively with the subject. It is a paradigm for educational technology that incorporates engaging small-group activities and private computer-based learning outside the classroom. J. 2020, Sargent and others. In this model, due to the limited time within the classroom, students become more focused on active project-based learning, setting together about real-world issues to accomplish greater comprehension. In addition, faculty members no longer take time out of the classroom to deliver information that requires students to complete self-directed learning before class. This is an impressive manifestation of his reorganization of time inside and outside the school, shifting learning decisions from the teacher to the students.

In addition, the flipped learning model is part of a broader education movement that overlaps its

implications with blended learning, exploratory learning, and other instructional methods and tools aimed at a more flexible and active approach to learning and greater student engagement. As documented in Martin's (2012) study, in the digital age, students are not obliged to attend school and receive lectures from instructors but rather learn from the vast array of online courses available via the Internet. The growth of the mobile Internet has aided in adopting the "flipped learning" paradigm of instruction and education, which uses online social media and digital video. Online video lectures enable students to study and review the material before taking part in face-to-face classroom interactions, according to Conner et al. (2014), who say that learner-centered activities have supplanted instructor-centered activities in education. Put, "flipped learning" is a significant transformation of the traditional classroom and mediabased teaching and learning process that will significantly change the teacher's position, the style of instruction, and the management structure. Recent years have seen a significant amount of research on the effects of flipped learning on student performance across a range of subjects and courses (Ugwuanyi, 2022). According to several studies, practical and fruitful learning techniques promote motivation, engagement, and critical thinking skills while affecting academic accomplishment. Masadeh (2021) argues that spending more time in class communicating with students and having competent professors are significant benefits over sitting by themselves working on assignments they most likely do not comprehend. Learners can work on problems in a joint effort. This has contributed to more efficiency in student learning and significantly changed previous lessons' procedures. Learners' satisfaction with online learning is influenced by flipped classrooms, instructor-student interaction, prompt responses, meeting individual needs, infrastructure backup, continuous access to Internet resources, uninterrupted access to Internet resources, and technology-mediated online exchanges (Iqbal et al., 2022). The new flipped learning model has four elements: a flexible environment, a learning culture, intentional content, and professional educators. This contrasts with the traditional model's lack of interactive experimentation, an abundance of online resources, personalized design, timely reflection, and multi-perspective evaluation.

Perceptions of Effectiveness in Flipped Language Learning

The flipped learning approach has recently gained popularity as a technique to advance teaching and

Xiong & Lambenicio 108/117

learning in educational technology (Li K.C. et al., 2021). Bergmann et al. (2012) state that videos are now the most widely used technology in flipped language schools. They also emphasize the applicability and usefulness of technology in the English flipped learning environment based on its flexibility and usability; particularly during COVID-19, technological resources have experienced an increase in engagement in language education (Cabero et al., 2019). Given the gradual integration of instructional technology into the English flipped classroom, we should attach importance to the scalability of the English "flipped" approach and to learners' perception of technology to influence their learning. While it is recommended that we opt for flipped teaching in English owing to self-arrangement of learning time, progressive activities-assignment and engaging experiences, and diversified strategies, there are some natural alternatives and suggestions available if we focus on academic progress, motivation, attitudes toward learning, engagement, social interaction, cooperation, and communicative competence on the dynamic and interactive occasion (Hawks, S.J. 2014).

More precisely, the interplay between flipping the English classroom and instructional technology greatly impacted the information systems spreadsheet course for college 1evel. English flipped classroom promotes learning well, encouraging students and allowing for more significant differentiation in teaching accompanied by the learning technology. Subsequently, and more typically, the pedagogical methods of the flipped class were applied in an English reading course. Online resources are also provided. Videos supplement the readings and promote more profound levels of analysis and participation in the classroom (Mo J. et al., 2017). They also provide background information on the subject and pose analytical questions. To achieve sustainable delivery of flipped language learning, it is essential to consider issues (Cevikbas M.et al., 2022) such as technological failures, time-consuming activities, and heavy workloads (Senali, M.G., 2022), the uncertainty of new learning contexts and tasks, and adaptability to change (Akçayır, G.et al., 2018). Klemke, R. et al. (2018) firmly states that maintaining learner engagement can also be problematic if activities are bland and do not take full advantage of the innovation of new technologies. To date, many experts have also found that the prescriptive algorithms generated by the technology system ignore contextual factors, there is a lack of thorough inquiry into flipped learning design, and even other criticisms come from the structures associated with traditional flipped learning. Equally important, some English

classes were concerned with software that made all the material resources available to students outside class time. The software also included mini-tests to assess students' cognitive abilities with the video material, which was theoretically validated (Zhou & Shutao, 2017). As a result, these typical examples mentioned above allow us to witness the effectiveness and practicality of the flipped learning process.

Undoubtedly, while there has been much discussion of flipped language learning as described above, there has been little research into how to implement flipped language learning effectively and to identify the issues that affect its effectiveness. As the determinants of students' learning in flipped language are still being explored, it is essential to identify this issue. It is thus expected that the results of this study will inform students about the effectiveness of flipped language learning, thereby enabling effective implementation of this learning method in educational institutions, even more so in the aftermath of the pandemic.

Challenges Encountered by Language Learners

Nevertheless, there remains a great deal of research on the challenges for learners and instructors regarding technological breakdowns (Cevikbas, M.et al., 2022), time-consuming activities and heavy workloads (Senali, M.G., 2022); uncertainty about new learning contexts and assignments, and resilience to change (Akçayır, G.et al., 2018). These issues must be considered to achieve sustainable delivery of flipped language learning (Cevikbas M.et al., 2022). Klemke, R.et al. (2018) state firmly that it can also be a struggle to maintain learner engagement if the activities are bland and do not make the most of the innovative strengths of new technology. So far, many experts have found that their erratic attendance and poor sense of responsibility to build up their knowledge make it difficult to handle the constant stress before classes (Lopes et al., 2018). This, to a great extent, generates anxiety and frustration for learners. Besides, what cannot be noticed is that the prescriptive algorithms produced by the technology system ignore contextual factors, there is a lack of thorough inquiry into flipped learning design, and even other criticisms arise from the structure associated with traditional flipped learning. Last but not least, according to Zhang L. et al. (2020), the pre-course learning activities connected to it overly rely on lectures, which may not be the most effective technique to individualize and capture learners' attention. The obstacles above in the delivery of flipped learning have been conducted within the research domains, particularly in the Chinese context.

Xiong & Lambenicio 109/117

Methodology

This study used a mixed-methods, quantitative research approach to determine whether the factors are essential to successfully implementing flipped language learning. In addition, the difficulties that language learners encounter in flipped language learning are also identified using a qualitative methodology.

Study Respondents

High school students from Longli High School in Guizhou Province, China, participated in this study. One hundred twenty-six participants were randomly chosen from various grades; 37.51% were men, and 62.49% were women. Twenty more students were chosen for interviews.

Instruments of the Study

These instruments were developed using a variety of trustworthy and dependable sources. For instance, the indicators measuring perceived ease of use and learning climate are adapted from Wu et al. (2009)'s work, the indicators measuring the use of teacherstudent interaction are taken from Ali and Ahmad's (2011) study, and the indicators measuring technology use are taken from a template on the official Chinese questionnaire website. A five-point Likert scale survey with a one to five-point range was also employed in this investigation. A five (5) on a Likert scale equals a strong endorsement, while a score of one (1) equals a firm rejection. The Cronbach alpha coefficient was used to assess the internal consistency and reliability of the results of the scale's items. Based on the instrument's dependence coefficient of 0.885, we can say it is reliable for gathering data. The required data were evaluated using the Statistical Package for the Social Sciences (SPSS) after testing, content validation, and instrument validation.

Procedures

After asking respondents to complete the questionnaire thoroughly, careful data analysis was done to get unbiased findings. This included correlation analysis and multiple regression analysis.

Ethical considerations

Before participating, participants are made aware of the study's goals, tools, and data requirements. In addition, to academic integrity, their secrecy and identity are ensured throughout the entire procedure.

Results

The study aimed to pinpoint elements that influence flipped English learning in general and areas where teachers and students may concentrate on making it successful, particularly in light of the COVID-19 Pandemic.

Students' Perception of the Effectiveness of Flipped Language Learning

Table 1 presents descriptive statistics of variables concerning the Cronbach alphas and means in detail. It describes learners' perceptions of the effectiveness of flipped language learning, particularly concerning ease of use, self-efficacy, use of technology, learning context, and interaction inside and outside the four-walled classroom.

Table 1. Students' Perceptions of the Level of Effectiveness of Flipped Language Learning

Factors	Cronbach Alpha	Mean	Interpretation
	•		
Perceived ease of use	0.891	4.040	High
Perceived self-efficacy	0.877	3.931	Average
Technology use	0.885	4.177	High
Learning context	0.797	3.683	Average
Online-offline interaction Perceived effectiveness	0.879 0.893	4.071 4.220	High High

In particular, the Cronbach Alphas for the indicators ranged from 0.797 to 0.893. The descriptive rating, thought to be the highest level of perceived efficacy of language use for flipped learning, received a significant endorsement from the use of technology, with the mean score suggested by its use among the independent variables being 4.177. Students believed using technology would enhance learning's entertainment value and make it more exciting and fun. With the use of technology, their commitment to the program and readiness to pick up the language both rise. The second category's total mean score of 4.040, interpreted as a relatively high degree of perception, can be used to determine how usable flipped language learning is. This element is vital in establishing how well the user experience in the flipped classroom works, because flipped learning can be rapidly and easily introduced as a blended method and reflects the level of student success. Compared to other learning models, the overall mean scores depicted in the fifth category of 'learning climate' and

Xiong & Lambenicio 110/117

the third category of "perceived self-efficacy" in flipped language learning fluctuated at 3.683 and 3.931, respectively, with comparatively average ratings for perceptions. Once they know the advantages, flexibility, efficiency, and added benefits of flipped language learning, students are more inclined to use it. The learning environment also influences the effectiveness of students' responses to implementing flipped learning. In a proactive learning environment, students will be ready to receive various ideas, information, and knowledge. The agreement and the interactive aspect of flipped language learning had an overall mean score of 4.071, a descriptive level of agreement. They were therefore interpreted as having a reasonably high level of perception. More significantly, interactions involving sharing knowledge, testing, questioning, and course-related activities greatly impacted how effective flipped language learning was. The effectiveness of flipped language learning is indicated by all of the indicators mentioned earlier in a largely favorable manner.

Relationship Between the Level of Effectiveness of Flipped Language Learning and the Factors

A Pearson Correlation analysis is used to evaluate quantitative data to determine whether a relationship exists and how strong it is. Only -1 to +1 is the range of the Pearson correlation coefficient (r). A positive correlation is shown by a (r) of 1.0, while a negative correlation is indicated by a (r) -1. Accordingly, Hauke J et al. (2011) state that a perfect correlation of 1 or -1 indicates that it is possible to accurately estimate one variable's value by knowing the other variable's value.

Table 2. Relationship between the Level of Effectiveness of Flipped Language Learning and the factors

Indicators	Effectiveness	Ease of use	Self-efficacy	Tech	Context	Interaction
Effectiveness	1					
Ease of use	0.814**	1				
		0.824**	1			
Self-efficacy	0.763**					
Technology	0.735**	0.746**	0.768*	1		
		0.700**	0.780*	0.775*	1	
Learning context	0.701**		*	*		
Online-offline Interaction	0.718**	0.828**	0.818*	0.797*	0.769**	1

Legend: * p<0.05 ** p<0.01

Table 2 demonstrates the use of correlation analysis to examine the connections between the dependent variable "effectiveness" and the independent variables "ease of use," "self-efficacy," "use of technology," "earning context," and "online and offline interaction," with the strength of their connections being expressed using Pearson's correlation coefficient. The efficiency of flipped language learning (the reliable variable) is significantly positively correlated with the independent variables. As Cohen (1988) has pointed out, the correlation value 0.5 is significant, 0.3 is medium, and 0.1 is negligible. Because all correlation values are over 0.5, it is possible to consider the independent variables related to perceived ease of use, selfefficacy, technology use, learning atmosphere, and online-offline interaction to have substantial and strong correlations with r=0.814, r=0.763, r=0.735, r=0.701, and r=0.718, respectively. Additionally, all coefficient values were considerably more significant than zero, indicating a significantly positive link between the components. This approach, therefore, confirms the successful application of flipped language learning by investigating its link with the dependent variable (flipped effectiveness). More specifically, the efficiency of flipped language learning is most closely correlated with the independent variable "perceived ease of use" (r=0.814, p0.01). The lowest connection is also seen for "learning climate" (r=0.701, p0.01). "Mental preparedness" (r=0.790, p0.01), "perceived self-efficacy" (r=0.763, p0.01), and "technology use" (r=0.735, p0.01) are other independent factors that have a strong relationship with the dependent variable.

A multiple regression analysis of factors influencing effectiveness in flipped language learning.

Regression analysis is used to determine whether the independent and dependent variables have a relationship of influence and to determine the direction and magnitude of that relationship (Barassi M R, 2005);

Table 3. Regression analysis of factors influencing effectiveness in flipped language learning

Dependent variables		Beta	t	P			
		-	-0.576	0.566			
	Ease of use	0.176	952632774180.924	0.000**			
	Self-efficacy	0.207	1200413338187.301	0.000**			
Independent variables	Technology use	0.171	1101768129164.379	0.000**			
	Learning context	0.224	1514189255154.763	0.000**			
	Online-offline interaction	0.178	1008330465773.586	0.000**			
\mathbb{R}^2	1.000						
Adjusted R ²	1.000						
F value	F (6,93)=2.5259357950136147e+25,p=0.000						

Xiong & Lambenicio 111/117

Table 4. Challenges Encountered by Learners on Effectiveness in Flipped Language Learning

First, the model's R-value was assessed to determine its suitability. The dependent variable in a linear regression was then effectiveness, and the independent variables were self-efficacy, usability, science and technology, interaction, and learning environment. The model's R-value of 1.000 indicates that its components, including self-efficacy, usability, science and technology, interaction, and learning environment, accounted for 100.0% of the variation in the dependent variable.

It was also decided whether the regression model was significant using the F-value test. It was established that the model was meaningful and that at least one of the independent variables would affect the dependent variable if it passed the test (p0.05). On the other side, it was established that the model was created to be meaningless and that none of the independent variables would affect the dependent variable if it failed the test (p>0.05). The model passed the F-test, above seen in the (F=252593579501361470000000000.000,p=0.0000.05), demonstrating that it was built meaningfully. The final specific analysis can be seen as follows. The regression coefficient values of 0.207 self-efficacy (t=1200413338187.301,p=0.000<0.01) and 0.176 for ease of use (t= 952632774180.924, p=0.000<0.01), 0.171 for technology (t=1101768129164.379,p=0.000<0.01), 0.178for interaction (t=1008330465773.586, p=0.000<0.01), and 0.224 for (t=1514189255154.763,learning climate p=0.000<0.01), implying that self-efficacy, and in summary the analysis shows that: ease of use, technology use, interaction, and learning environment all have a significant positive relationship on the dependent variable.

Challenges Encountered by Learners on Effectiveness in Flipped Language Learning

Some of the challenges students face are of great concern, as follows.

Challenges Encountered by Learners

- 1. Digital divide
 - A. Poor internet service
 - B. Insufficient mobile devices or computers
- Lack of discipline and motivation to learn
 - A. Disturbed by their surroundings.
 - B. Bored with classroom content
- 3. Inadequate learning resources
 - A. The overwhelming workload
 - B. No immediate response
- Limited equipment
 - A. Outdated auxiliary aids.
 - B. Inaction of the education systems
 - C. Old-fashioned classroom layout
- Poor health
 - A Diminished social interaction
 - B. Physical and mental problem

Digital Divide

This is understood as unequal and divided access to digital technology and online resources. Owing to costly access to the Internet, learners, especially those with low income in remote districts, fail to cultivate the necessary technological skills to adapt to social advancement. To a certain extent, it dramatically impacts the sustainable capacity for learning and future growth.

Lack of Discipline and Motivation to Learn

A less traditional environment can be a barrier for inexperienced pupils exposed to flipped language learning. Students may need help with self-discipline because there is no sense in showing up in class before accepting this lesson. Also, as is often the case, students attempt to misuse technology primarily for entertainment rather than educational purposes. This is a sign of students struggling with self-discipline. There are few intuitive and comprehensive tools to control students searching for inappropriate content or using their devices when playing is inappropriate. This can significantly impact authentic academic outcomes and active engagement for pupils in flipped learning.

Inadequate Learning Resources

Flipped learning allows for updated resources to accommodate a variety of learning methods; therefore, content and instructional design are equally important. However, as teachers have little free time, they have fewer opportunities to design and create new content, rendering students even less likely to take up learning topics guided by the new concepts.

Xiong & Lambenicio 112/117

Limited Equipment

Videoconferencing, screencasting, and cloud-based platforms are viewed as low-quality and out-of-date technologies since they have not been used or updated. Therefore, teachers use technology sparingly. This is one of the main arguments favoring instructors learning more about cutting-edge technology. To participate in flipped learning, students must also have access to the internet and computers or mobile devices at home. People spend more time on traditional education because they do not know the fundamentals well

Poor Health

One of the most severe obstacles for teachers and students is discovering, integrating, and processing such vast information. Many teachers, for example, have difficulty keeping up with these many changes and trends when incorporating technology into their classrooms. In other words, they are inclined to hold old mindsets and not adapt to the current learning pace. Owing to old-style habits and limited familiarity with online tools as well, learners lag academically in these unusual circumstances, suffering from a sharp upsurge in frustration or anxiety, in addition to the online flipped learning settings, where it is more challenging for teachers to read verbal body language, and where students remain silent or feel too bewildered to learn anything. Other factors, such as the impact of physical distance or a delayed response while providing academic support in an asynchronous course, may also cause similar dysphoric emotions. It is also believed to be the primary cause of children's emotions of isolation, making it very challenging for them to engage with individuals outside of their immediate environment without using their bodies physically.

Discussion

This study examined the factors that influence flipped English learning and explored effective ways to enhance students' implementation of flipped language learning. The results that follow are in line with those from earlier investigations. According to the data analysis, learners' opinions of flipped language learning have significantly improved regarding self-efficacy, usability, technology utilization, learning environment, and synchronous and asynchronous interactions. As Smith and Boscak (2021) described,

learners could reorganize their learning space to cater to a course or a module and support teamwork or selfdirected learning with the help of online materials. Flipped language learning thus creates a flexible and comfortable environment where instructors and students can work together and actively participate in the target tasks. Instructors must give pre-recorded handouts and online course resources before class to promote close connection, commitment to collaborative group discussions, and broad problemsolving (Tsai & Wu, 2020). Online and in-person training is fundamentally combined in blended learning. His findings confirm that students gain from greater flexibility in terms of time and location, quick and thorough access to online materials, and high levels of initiative in learning pace.

Compared to traditional learning models, Latorre-Cosculluela et al. (2021) analyzed the time optimization, technology choices, and discussion performance that flipped learning entails. They also offer remedies for problems with learning. According to Chick et al. (2020), the benefits of flipped language learning are enhanced by developing 21st-century communicative competence rather than passive instruction. This is seen as solid proof that learners greatly benefit from flipped classrooms.

Despite the significant benefits of flipped learning, implementing flipped language learning is currently imperfect, with several inefficiencies, such as overreliance on traditional learning models and uneven student participation. This has confused many students regarding this approach, and flipped learning remains a formality rather than a reality. Many researchers have studied the apparent effectiveness of language learning. Numerous studies have examined the connection between social and personal traits and flipped learning. These studies, however, do not provide a thorough analysis of the factors affecting the effectiveness of flipped language learning, provide teachers with specific advice, or enable students to increase their ineffectiveness considerably.

According to Wu and Liu (2013) and Joo, Lim, and Kim (2011), perceived ease of use in blended learning relates to the conviction that a specific interface and material delivery will be easy. This is so that students' perceptions of learning's simplicity and accessibility might be influenced. As a result, those who choose flipped learning tools, technologies, and online learning resources frequently perceive them as being easier to use and comprehend, which ultimately increases the effectiveness of the flipped learning mode and students' learning needs and confidence.

Xiong & Lambenicio

Furthermore, they were carefully designed and implemented to ensure that students saw the online and offline learning environments as user-friendly and matching their learning goals (Sahin & Shelley, 2008).

Wigfield & Guthrie (1997) defined self-efficacy as the perception and identification of people with their talents to assess self-efficacy's effect on the success of flipped learning. People will decide if they can put in much effort, are willing to complete a particular work, and are persistent based on this. Students who believe they have the capacity and ability to succeed in flipped language learning are more likely to be willing to participate in classroom activities. It is directly related to self-motivation as well. As argued by Choet al. (2021), motivation is an intrinsic force pushing humans to take action to achieve their goals. The link between motivational outcomes and cognitive competence is extensively elucidated due to the learner-based expertise, learning strategies, peer relationships, teacher assistance, and classroom participation. Under these circumstances, students become increasingly interested in short videos or films about Western culture, promoting intrinsic motivation for learning under multitasking. Furthermore, in line with Milman's (2012) findings, they feel more confident in completing assignments, discussions, assessments, and tests with the help of flipped learning techniques. Additionally, Chao et al. (2015) found that students' attitudes toward verbal communication, thinking, writing, and discussion in flipped language learning were favorable, positively impacting their cognitive and problem-solving abilities and emotional experiences during the learning process.

Technology use is thought to be directly tied to teachers, students, and other factors. Agung et al. (2020) noted several widespread technological problems. Additionally, they noted that most survey participants were not keen to switch their online learning, mainly due to their limited access to the internet and other technological means. This could have exposed the digital divide problem, which unquestionably affects the successful implementation of flipped learning for students. Unreliable Internet service makes the technology even more inaccessible, according to Barrot et al. (2021). This problem is typically exacerbated by geographical areas with fragmented or nonexistent Internet connectivity, claim Rotas et al. (2020). In some remote areas, students often experience technical problems such as the lack of WIFI intervention, low internet speeds, or even their inability to use computers or mobile phones for online activities, which are significant barriers for them. As a result, this largely contributes to the fact that flipped

classrooms cannot be adequately implemented, which is becoming very frustrating. In other words, students need to be fully aware of the new technology, have an open mind, and be actively engaged in flipped language learning to effectively carry out their learning activities. Therefore, adequate preparation is central to a successful flipped classroom and limits the challenges (Adnan, 2017). As consistently explained, lack of readiness to transfer to online platforms, inadequate basic infrastructure, and non-standard internet services stifle students' active participation in flipped learning and constrain its effective implementation.

A reliable and efficient learning environment was fundamental to an effective flipped language learning model. Shemshack et al. (2020) argued that academics were more concerned with the flipped language approach than educational institutions. As a result, many schools still invested little in teaching equipment. At the same time, the traditional layout of classrooms constrained the atmosphere in which learners learned. The ultimate goal of flipped language learning went unrealized when students sat in rows of desks all day and could not emphasize collaboration, interaction, and creativity as core literacy. Therefore, an attractive classroom design and reliable equipment support are essential for a productive learning environment. According to Shemshack et al. (2020), governments, educators, educational technologists, software developers, and field researchers should all be involved in creating a system that would work together to create successful PL models. Sher (2009) asserts that interactions between professors and students include knowledge dissemination, motivational strategies, and feedback. Communication between students and teachers is critical in educational environments, according to Small et al. (2012). This engagement is essential for students to learn successfully and actively (Sher, 2009). According to Small et al. (2012), interactions between pupils and teachers or other types of interpersonal communication were crucial for pupils.

Therefore, we can claim that the interplay between teaching and giving feedback substantially impacts student motivation. More specifically, the teacher is effectively and efficiently coordinating and encouraging the interaction of learners as well as the interaction with others. While given the necessary direction, students are expected to function well in their target language without constant teacher supervision. They must express themselves inside and outside the classroom's four walls freely, effectively, efficiently, naturally, correctly, and fluently. Among

Xiong & Lambenicio 114/117

our list of language barriers to flipped learning, Ardan et al. (2020) also found some negative signs that students' motivation was weakened by the loss of the company of their peers. Nevertheless, these obstacles can be addressed with the help and communication of the teacher. dhull, P.I. et al. (2017) affirm their conjecture that the lack of physical interaction may make students feel isolated, which undoubtedly leads to ineffective flipped online learning. It is thus evident that online and offline interaction is particularly crucial.

Self-discipline is cited as the most formidable challenge for students to surmount. Meanwhile, it is intimately connected to self-motivation. As deemed by Cho et al. (2021), motivation is an inner force that moves human beings to take action to achieve their goals. As a result of the explanation between motivational outcomes and cognitive capability, learner-based expertise, learning strategies, peer relationships, teacher assistance, and classroom participation were extensively elucidated. Furthermore, failing to motivate and monitor students' attention to preschool learning activities can seriously reduce the effectiveness of in-class activities. This aligns with Milman's (2012) findings that managing students' at-home learning is challenging and significantly lowers student motivation. Videos used as pre-course education that are inappropriate may also make learning more difficult. For example, when watching protracted, hostile movies, several pupils lost interest and felt distant from the teacher appearing on the screen. Similarly, Chao et al. (2015) emphasize that ensuring students are ready when using such movies can be challenging. They could require assistance watching or fully understanding the instructional films, making them unprepared for handson classroom learning exercises. Besides being constantly distracted by entertainment software and social media, students tend to lose the ability to selfregulate, becoming confused and uninterested during a cycle of academic burnout. Assuming no internal stimulus for self-motivation, they will quietly selfdiscipline and form bad habits.

The scarcity of learning resources is a further complaint and concern to consider. M. Cevikbas (2022) asserts this. Due to time constraints and workload, teachers typically struggle to customize the curriculum for each student and give fast feedback and evaluation. In addition, some teachers lament that despite the abundance of educational videos on the Internet, they are difficult to find or do not precisely cover the subjects they want their students to learn. Due to these reasons, many teachers try to generate

their materials without high-quality and valuable digital content, which requires a lot of time and effort. More alarmingly, effective materials demand preparation, planning, time, and skills from teachers, unintentionally increasing teachers' workload. In this regard, the considerable workload and tedious procedures lead to a scarcity of resources for student learning and even the inability to impart timely and objective assessments and tests when engaging in activities, constraining students' capacity to output and input information. This challenge aligns with Bhagat et al. (2016), who report that delayed assistance from the teacher can also be a barrier for students in a flipped classroom.

Academics, rather than educational institutions, seem more interested in flipped language methods, according to Shemshack et al. (2020). Many schools continue to make minimal investments in educational technology. Teachers in this situation have fewer opportunities to receive training on digital technology. The design of conventional classrooms presents another barrier to implementing flipped learning. Instead, learners are less likely to emphasize collaboration, interaction, and creativity as core literacy. The goal of flipped language learning cannot be achieved if students are sitting at rows of desks all day. A dependable and efficient learning environment requires a well-balanced classroom layout and support for essential technology. According to Shemshack et al. (2020), government scholars, Educ-technologists, software engineers, and field researchers should collaborate systematically to build effective models.

The final spot in our list of obstacles in flipped language learning concerns losing a sound mind and body. Concerning the student-related difficulties of the ongoing conflict, Ardan et al. (2020) have uncovered negative signs that students' motives were reduced because of a sense of loneliness generated by the loss of the company of their schoolmates. However, with the aid of instructors who should adapt their educational approaches to meet the needs of their pupils, these difficulties can be overcome. Educational experience and knowledge become crucial tools for this in the flipped online world. P.I. Dhull According to et al. (2017), the absence of direct physical contact and the presence of peers may make students feel isolated. Physical health is undoubtedly one area where flipped online learning has disadvantages. In contrast to the longer screen time, students are becoming less social in outdoor activities. Alternatively, even end up with bad backs or eyesight sufferings.

Xiong & Lambenicio 115/117

Due to the small sample size, the fact that only student viewpoints were considered, and the scope of the study's generalizations, this study has certain limitations. Additional research is required to comprehend the scenarios and interactions underlying this study fully. This research should increase the sample size and better explore the viewpoints and experiences of teachers throughout the teaching and learning process. This will give researchers practical implications for the implementation of this innovative approach.

Conclusion

The study's findings provide an important context for integrating online and offline in the flipped classroom and for effective flipped learning for students. As an alternative to traditional learning, flipped language learning can provide learners with more flexible platforms and opportunities to effectively improve the quality of learning. In other words, the results are highly relevant to educational institutions, academics, and the country.

The small sample size and constrained capacity for generalizations in this study are drawbacks since students from various educational institutions may have different opinions about the efficacy of flipped language learning. Additionally, students must acquire the technical expertise required to fully utilize technology's educational potential. When using flipped language learning, students must also comprehend what, when, where, why, and how to handle any problems that may arise. A complex interweaving of factors plays a vital role in effectively using synchronous and asynchronous flipped language learning and fills in the gaps of previous traditional models. As one might reasonably presume, flipped language learning effectively creates a more conducive learning environment, and the new model facilitates more excellent teacher and student resilience, combining interactive online learning with the traditional classroom. Therefore, students should have the technical knowledge and experience needed to utilize the post-popular period's educational potential properly. To sum up, in future research, to get a good grasp of the interaction of the scenarios and elements behind this study, further research is required to expand the sample size and delve into the perspectives and experiences of the faculty members in the teaching and learning process, providing researchers with valuable insights into the realization of this creative approach.

References

Adnan, M. (2017). Senior-year ELT students' perceptions of the flipped classroom: A materials development course. Computer Assisted Language Learning, 30(3–4), 2017.

Akçayır, G.; Akçayır, M. The flipped classroom: A review of its advantages and challenges. Comput. Educ. 2018, 126, 334–345

Ardan M, Rahman FF, Geroda GB (2020). The influence of physical distance on student anxiety on COVID-19, Indonesia. J Crit Rev 7(17):1126–1132

Armstrong-Mensah, E., et al (2020). Covid-19 and distance learning: Effects on Georgia State University School of Public Health Students.

Barassi M R. Micro econometrics; Methods and Applications by A. Colin Cameron; Pravin K. Trivedi[J]. 2005.

Barrot, J. S. et al. (2021). Students' online learning challenges during the pandemic and how they cope with them: The case of the Philippines.

Bergmann, J., & Sams, A. (2012). Flip Your Classroom: Reach every student in every class daily—Eugene, OR: International Society for Technology in Education.

Cabero, J., Arancibia, M. L., & Del Prete, A. (2019). Technical and didactic knowledge of Moodle LMS in higher education. Beyond practical use. Journal of New Approaches in Educational Research, 8(1), 25–33. https://doi.org/10.7821/naer.2019.1.327

Cevikbas, M.; Kaiser, G. Can flip classroom pedagogy offers promising perspectives for mathematics education on pandemic-related issues? A systematic literature review. ZDM–Math. Educ. 2022

Chao, C. Y., Chen, Y. T., & Chuang, K. Y. (2015). Exploring students' learning attitude and achievement in flipped learning supported computer-aided design curriculum: a high school engineering education study. Computer Applications in Engineering Education, 23(4), 514–526.

Chick RC, Clifton GT, Peace KM, Propper BW, Hale DF, Alseidi AA, Vreeland TJ (2020) Using technology to maintain the education of residents during the Covid-19 pandemic. J Surg Educ 3:1–4.

Chen, H.R.; Hsu, W.C. Do Flip Learning and Adaptive Instruction Improve Student Learning Outcomes? A Case Study of a Computer Programming Course in Taiwan. Front. Psychol. 2022, 12, 10.

Cohen, J. (1988). Statistical power analysis for behavioral sciences (2nd Ed.). New Jersey: Lawrence Erlbaum.

Conner, N. W., Stripling, C. T., Blythe, J. M., Roberts, T. G., & Stedman, N. L. P. (2014). Flipping an agricultural education teaching methods course. Journal of Agricultural Education, 55(2), 66–78. https://doi.org/10.5032/jae.2014.02066.

Dhull, P.I.; Sakshi, M. Online learning. Int. Educ. Res. J. 2017, 3, 32–34

Hauke J, Kossowski T. Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data[J]. Quaestiones Geographicae, 2011, 30(2):87–93.

Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students' satisfaction and persistence: Examining the perceived level of presence, usefulness, and ease of use as predictors in a structural

Xiong & Lambenicio 116/117

model. Computers & Education, 57(2), 1654-1664. doi: http://dx.doi.org/10.1016/j.compedu.2011.02.008

Kaiser, A. Bandyopadhyay, M. A. R. Ahad, & K. Ray (Eds.), Proceedings of the international conference on big data, IoT and machine learning. Lecture notes on data engineering and communications technologies. (Vol. 95). Springer.

Klemke, R.; Eradze, M.; Antonaci, A. The flipped MOOC: Using gamification and learning analytics in MOOC design—A conceptual approach. Educ. Sci. 2018, 8, 25.

Latorre-Cosculluela C, Suárez C, Quiroga S, Sobradiel-Sierra N, Lozano-Blasco R, Rodríguez-Martínez A (2021). Flipped Classroom model before and During COVID-19: Using Technology to Develop 2 1 s t C e n t u r y Skills. ITSE. Ahead of print. https://doi.org/10.1108/ITSE-08-2020-0137

Li, K.C.; Wong, B.T.-M. Features and trends of personalized learning: A review of journal publications from 2001 to 2018. Interact. Learn. Environ. 2021, 29, 182–195.

Iqbal, M. H., Rahaman, M., Mahamud, S., Haque, A., Islam, A., Mazid, A., & Hossain, E. (2022). Students' satisfaction with virtual interaction mediated online learning: An empirical investigation. In M. S. Arefin, M. S.

Martin, F. G. (2012). Will massive open online courses change how we teach? Communications of the ACM, 55(8), 26–28. https://doi.org/10.1145/2240236.2240246

Masadeh, T. S. (2021). Teaching practices of EFL teachers and enhancing creative thinking skills among learners. International Journal of Asian Education, 2 (2), 153–166. https://doi.org/10.46966/ijae.v2i2.173

Mo, Jun; Mao, Chunmei (2017). "Revista de la Facultad de Ingeniería U.C.V. 32 (10): 632–639. They are archived from the original on 23 November 2018.

Milman, N. B. (2012). The flipped classroom strategy: What is it, and how can it best be used? Distance Learning, 9(3), 85–87

Nolan E, Brady M, Rienties B, Héliot Y. Once more on the rollercoaster: loses and gains from the rapid shift to online delivery during Covid. Academy of Management Proceedings. 2021 doi: 10.5465/ambpp.2021.15358abstract.

Rotas, E., et al (2020). Difficulties in remote learning: Voices of Philippine university students in the wake of COVID-19 crisis.

Sahin, I. & Shelley, M. (2008). Considering Students' Perceptions: The Distance Education Student Satisfaction Model. Journal of Educational Technology & Society, 11(3), 216–223.

Salem, M. & ALwan, N. (2018). 'The effectiveness of the flipped learning strategy in pattern making and grading women's clothing Using Gemini CAD System,' International Design Journal, vol. 8, no. 2, pp. 510–535.

Sargent, J., & Casey, A. (2020). Flipped learning, pedagogy, and digital technology: Establishing consistent practice to optimize lesson time. European Physical Education Review, 26(1), 70–84.

Senali, M.G.; Iranmanesh, M.; Ghobakhloo, M.; Gengatharen, D.; Tseng, M.-L.; Nilsashi, M. Flipped classroom in business and entrepreneurship education: A systematic review and future research agenda. Int. J. Manag. Educ. 2022, 20, 100614.

Sharon J.Hawks. The Flipped Classroom: Now or Never?[J] Educational Technology. 2014.

Shemshack, A.; Spector, J.M. A systematic literature review of personalized learning terms. Smart Learn. Environ. 2020, 7, 33.

Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms. Smart Learning Environments, 7(1), 1–20.

Sher, A. (2009). Assessing the relationship of student-instructor and student-student interaction to student learning and satisfaction in Web-based Online Learning Environment. Journal of Interactive Online Learning, 8(2).

Small, F., Dowell, D., & Simmons, P. (2012). Teacher communication preferred over peer interaction: Student satisfaction with different tools in a virtual learning environment, Journal of International Education in Business, Vol. 5 Iss: 2, pp.114 – 128.

Smith E, Boscak A (2021). A virtual emergency: Learning lessons from remote medical student education during the COVID-19 pandemic. Emerg Radiol 28(3):445–452. https://doi.org/10.1007/s10140-020-01874-2

Strela P, Osborn A, Palmer E. The flipped classroom: a metaanalysis of effects on student performance across disciplines and education levels. Educational Research Review. 2020 doi: 10.1016/j.edurev.2020.100314. [CrossRef] [Google Scholar] [Ref list]

Tsai, H.-L., & Wu, J.-F. (2020). Bibliometric analysis of flipped classroom publications from the Web of Science Core collection published from 2000 to 2019. Science Editing, 7(2), 163–168.

Ugwuanyi, C. S. (2022). Developing sound knowledge of basic science concepts in children using flipped classroom: A case of simple repeated measures. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10850-3

Vitta, J. P.; Al-Hoorie, Ali H. (2020). "The flipped classroom in second language learning: A meta-analysis." Language Teaching R e s e a r c h . A d v a n c e d o n l i n e publication.doi:10.1177/1362168820981403. S2CID 234415591.

Wigfield, A.,&Guthrie, J.T.(1997). Relations of children's motivation for reading to the amount and breadth of their reading. Journal of Educational Psychology,89(3):420-432

Wu, J., & Liu, W. (2013). An Empirical Investigation of the Critical Factors Affecting Students' Satisfaction in EFL Blended Learning, 4(1), 3-3.

Zhou, S., Zhang, T. (2017). ." Revista de la Facultad de Ingeniería U.C.V. 32: 267–273.

Affiliations and Corresponding Information

Ruiyue Xiong

University of the Cordilleras -Philippines

Dr. Gregerlin I. Lambenicio

University of the Cordilleras - Philippines

Xiong & Lambenicio