Storage of Information Using Small Organic Molecules.

Storage of Information Using Small Organic Molecules.

Cafferty, Brian J;Ten, Alexei S;Fink, Michael J;Morey, Scott;Preston, Daniel J;Mrksich, Milan;Whitesides, George M;
acs central science 2019 Vol. 5 pp. 911-916
341
cafferty2019storageacs

Abstract

Although information is ubiquitous, and its technology arguably among the highest that humankind has produced, its very ubiquity has posed new types of problems. Three that involve storage of information (rather than computation) include its usage of energy, the robustness of stored information over long times, and its ability to resist corruption through tampering. The difficulty in solving these problems using present methods has stimulated interest in the possibilities available through fundamentally different strategies, including storage of information in molecules. Here we show that storage of information in mixtures of readily available, stable, low-molecular-weight molecules offers new approaches to this problem. This procedure uses a common, small set of molecules (here, 32 oligopeptides) to write binary information. It minimizes the time and difficulty of synthesis of new molecules. It also circumvents the challenges of encoding and reading messages in linear macromolecules. We have encoded, written, stored, and read a total of approximately 400 kilobits (both text and images), coded as mixtures of molecules, with greater than 99% recovery of information, written at an average rate of 8 bits/s, and read at a rate of 20 bits/s. This demonstration indicates that organic and analytical chemistry offer many new strategies and capabilities to problems in long-term, zero-energy, robust information storage.

Citation

ID: 3592
Ref Key: cafferty2019storageacs
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
3592
Unique Identifier:
10.1021/acscentsci.9b00210
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet